下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载第九章不等式与不等式组复习教案一、教学内容 :不等式与不等式组二、教学目标1、知识与技能:能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。2、方法与过程 :能够根据具体问题中的数量关系, 列出一元一次不等式和一元一次不等式组,解决简单的实际问题。3、情感、态度与价值观:会运用数形结合、分类等数学思想方法解决问题,会“逆向”地思考问题,灵活的解答问题 .三、教学重点:能熟练的解一元一次不等式与一元一次不等式组四、教学难点:能熟练的解一元一次不等式(
2、组) 并体会数形结合、分类讨论等数学思想。五、教学方法:情境教学、类比探究、多媒体演示相结合六、教学过程:(一)知识梳理1. 知识结构图不等式的定义概念不等式的解集基本性质不等式一元一次不等式的解法不等式的解实际应用一元一次不等式组的解法2. 知识点回顾(1)、不等式用不等号连接起来的式子叫做不等式常见的不等号有五种: “”、 “>” 、 “<” 、 “”、 “”(2)、不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解学习必备欢迎下载不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点
3、。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。说明:不等式的解与一元一次方程的解是有区别的, 不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值(3)、不等式的基本性质A、不等式的两边都加上 ( 或减去 ) 同一个数或同一个整式 不等号的方向不变如果 a>b ,则 a+c>b+c,a-c>b-cB、不等式的两边都乘以 ( 或除以 ) 同一个正数,不等号的方向不变如果 a>b ,并且 c>0 ,那么则 ac>bc (或 a/c>b/c)C、不等式的两边都乘以( 或除以 ) 同一个负数,不等号的方
4、向改变如果 a>b ,并且 c<0 ,那么则 ac<bc( 或 a/c<b/c)说明:任意两个实数 a、b 的大小关系:a-b>O a>b;a-b=O a=b; a-b<O a<b(4) 、一元一次不等式只含有一个未知数,且未知数的次数是 1系数不等于 0 的不等式叫做一元一次不等式注:一元一次不等式的一般形式是 ax+b>O或 ax+b<O(aO,a,b 为已知数 ) ()、解一元一次不等式的一般步骤解一元一次不等式的一般步骤:(1) 去分母; (2) 去括号; (3) 移项; (4) 合并同类项; (5) 化系数为 1说明:解一元
5、一次不等式和解一元一次方程类似不同的是:一元一次不等式两边同乘以 ( 或除以 ) 同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方()一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组说明:判断一个不等式组是一元一次不等式组需满足两个条件:组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;不等式组中不等式的个数至少是 2 个,也就是说,可以是 2 个、 3 个、 4 个或更多(7)一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分叫做这个一元一次不等式组的解集一元一次不等式组的解集通常利用数轴来确定(8).不等
6、式组解集的确定方法,可以归纳为以下四种类型(设a>b)不等式组图示解集xax a1(同大取大)xbba学习必备欢迎下载2 xbx bxa(同小取小)3xab x a(大小xbab交叉取中间)4xa无解(大小分离解为空)xbba(9)解一元一次不等式组的步骤(1) 分别求出不等式组中各个不等式的解集;(2) 利用数轴求出这些解集的公共部分,即这个不等式组的解集课堂练习 ( 一 )1. 解不等式2 x 15x 5,34并把它的解集在数轴上表示出来.解:去分母,得:()()去括号,得:移项,得:合并同类项得:系数化为,得:解不等式组:2 x15x5342 ( x4 )3 x3解:解不等式得:
7、x8解不等式得: x5把不等式的解集和不等式的解集在数轴上表示如下: 原不等式组的解集为 :5 x8、求不等式(组)的特殊解:(1) 求不等式 3x+1 4x-5 的正整数解解:移项,得:合并同类项,得:系数化为,得:所以不等式的正整数解为: 1、 2、 3、4、5、6学习必备欢迎下载2x15()求不等式组1 (x2)3的整数解2解:由不等式得 : x 2由不等式得 : x 4把不等式的解集和不等式的解集在数轴上表示如下: 不等式组的解集为 :2 x4不等式组的整数解为:3、4不等式 ( 组 ) 在实际生活中的应用当应用题中出现以下的关键词 , 如大 , 小, 多, 少, 不小于 , 不大于
8、, 至少 , 至多等 , 应属列不等式 ( 组) 来解决的问题 , 而不能列方程 ( 组) 来解 .学校要到体育用品商场购买篮球和排球共只已知篮球、排球的单价分别为 130 元、 100 元。购买 100 只球所花费用多于 11800 元,但不超过 11900 元。你认为有哪些购买方案?解:设买篮球个,排球个,则根据题意可得:()()解不等式得:1解不等式得:31不等式组的解集为 : x3答:所以有三中购买方案: 购买篮球个, 排球个; 购买篮球个,排球个;购买篮球个,排球个课堂小结1. 在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。学习必备欢迎下载2. 解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是:等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。不等式组解集的确定方法。一元一次不等式(组)常与分式、根式、方程、函数等知识联系,解决综合性问题。3. 求不等式(组)的特殊解不等式(组)的解往往是无数多个,但有时解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。在这类题目中,要注意对数形结合思想的应用。4. 确定不等式(组)中字母的取值范围已知求不等式(组)的解集,确定不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新农合医保权益保证
- 联合体合作合同详实版解析
- 石材供应合同协议格式
- 动力电池批量订购协议
- 2024车体车身广告合同
- 大数据分析与环境保护考核试卷
- 无人机的商业模式创新与实践案例考核试卷
- 塑料制品的材料属性与性能测试考核试卷
- 家用纺织品的产品创新与差异化竞争考核试卷
- 兽用药品批发商的个性化服务考核试卷
- 拱桥悬链线计算表
- 半年分析----住院超过30天患者原因分析及改进措施
- 个人所得税完税证明英文翻译模板
- 无公害农产品查询
- 国家公派出国留学经验交流PPT课件
- 研究生课程应用电化学(课堂PPT)
- 六宫数独可直接打印共192题
- 班会:如何克服浮躁心理PPT优秀课件
- Monsters歌词下载,Monsters原唱歌词中文翻译,Monsters简谱KatieSky
- (完整版)A4作文格纸可直接打印使用
- 甘肃省普通高级中学综合督导评估方案(试行)[最新]
评论
0/150
提交评论