微积分92对坐标曲线积分_第1页
微积分92对坐标曲线积分_第2页
微积分92对坐标曲线积分_第3页
微积分92对坐标曲线积分_第4页
微积分92对坐标曲线积分_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目录 上页 下页 返回 结束 第二节一、对坐标的曲线积分的概念一、对坐标的曲线积分的概念 与性质与性质二、二、 对坐标的曲线积分的计算法对坐标的曲线积分的计算法 三、两类曲线积分之间的联系三、两类曲线积分之间的联系 对坐标的曲线积分 第十一章 目录 上页 下页 返回 结束 一、一、 对坐标的曲线积分的概念与性质对坐标的曲线积分的概念与性质1. 引例引例: 变力沿曲线所作的功.设一质点受如下变力作用在 xOy 平面内从点 A 沿光滑曲线弧 L 移动到点 B, 求移cosABFW “大化小” “常代变”“近似和” “取极限”变力沿直线所作的功解决办法:动过程中变力所作的功W.ABF ABF),(,

2、 ),(),(yxQyxPyxFABLxyO目录 上页 下页 返回 结束 1kMkMABxy1) “大化大化小小”.2) “常代变常代变”L把L分成 n 个小弧段,有向小弧段kkMM1),(kkyx近似代替, ),(kk则有(,)(,)kkkkkPxQyk所做的功为,kWF 沿kkMM11(,)kkkkkWFMM),(kkFnkkWW1则用有向线段 kkMM1kkMM1上任取一点在kykxO目录 上页 下页 返回 结束 3) “近似和近似和”4) “取极限取极限”nkW1kkkkkkyQxP),(),(nkW10lim(,kkkkkkP ) xQ( ) y(其中 为 n 个小弧段的 最大长度)

3、1kMkMABxyL),(kkFkykxO目录 上页 下页 返回 结束 2. 定义定义. 设 L 为xOy 平面内从 A 到B 的一条有向光滑有向光滑弧弧,若对 L 的任意分割和在局部弧段上任意取点, 都存在,在有向曲线弧 L 上对坐标的曲线积分坐标的曲线积分,LyyxQxyxPd),(d),(kkkxP),(kkkyQ),(nk 10lim则称此极限为函数或第二类曲线积分第二类曲线积分. 其中, ),(yxPL 称为积分弧段积分弧段 或 积分曲线积分曲线 .称为被积函数被积函数 , 在L 上定义了一个向量函数极限),(, ),(),(yxQyxPyxF记作),(yxF),(yxQ目录 上页

4、下页 返回 结束 LxyxPd),(,),(lim10nkkkkxPLyyxQd),(,),(lim10nkkkkyQ若 为空间曲线弧 , 记称为对 x 的曲线积分;称为对 y 的曲线积分.若记, 对坐标的曲线积分也可写作)d,(ddyxs LLyyxQxyxPsFd),(d),(d),(, ),(, ),(),(zyxRzyxQzyxPzyxFzzyxRyzyxQxzyxPsFd),(d),(d),(d)d,d,(ddzyxs 类似地, 目录 上页 下页 返回 结束 3.存在条件:存在条件:.,),(),(第二类曲线积分存在第二类曲线积分存在上连续时上连续时在光滑曲线弧在光滑曲线弧当当Lyx

5、QyxP4.组合形式组合形式 LLLdyyxQdxyxPdyyxQdxyxP),(),(),(),(.,jdyidxrdjQiPF 其其中中. rdFL 目录 上页 下页 返回 结束 5. 性质性质(1) 若 L 可分成 k 条有向光滑曲线弧), 1(kiLiLyyxQxyxPd),(d),(kiLiyyxQxyxP1d),(d),(2) 用L 表示 L 的反向弧 , 则LyyxQxyxPd),(d),(LyyxQxyxPd),(d),(则 定积分是第二类曲线积分的特例.说明说明: : 对坐标的曲线积分必须注意积分弧段的方向方向 !目录 上页 下页 返回 结束 6. 物理意义物理意义WAB所作

6、的功所作的功沿沿 AByQxPddjyxQiyxPF),(),( 变变力力dABWFr d(d ,d )rxy () ()ABPiQ jdxidy j 目录 上页 下页 返回 结束 二、对坐标的曲线积分的计算法二、对坐标的曲线积分的计算法定理定理:),(, ),(yxQyxP设在有向光滑弧 L 上有定义且L 的参数方程为)()(tytx,:t则曲线积分LyyxQxyxPd),(d),( )(),(ttP)(t)(ttd)(),(ttQ连续,证明证明: 下面先证LxyxPd),(tttPd )(),()(t存在, 且有目录 上页 下页 返回 结束 对应参数设分点根据定义ix,it),(ii点,i

7、由于1iiixxx)()(1iittiit)(LxyxPd),(tttPd )(),(niiiP10)(, )(limiit)(niiiP10)(, )(limiit)()(tLxyxPd),(niiiixP10),(lim对应参数连续所以)(t因为L 为光滑弧 ,同理可证LyyxQd),(tttQd )(),()(t目录 上页 下页 返回 结束 特别是, 如果 L 的方程为,:),(baxxy则xxxQxxPbad )(,)(,)(xLyyxQxyxPd),(d),(对空间光滑曲线弧 :类似有zzyxRyzyxQxzyxPd),(d),(d),()(t)(t)(t)(, )(),(tttQ)

8、(, )(),(tttRtd )(, )(),(tttP,:)()()(ttztytx定理 目录 上页 下页 返回 结束 例例1. 计算,dLxyx其中L 为沿抛物线xy 2解法解法1 取 x 为参数, 则OBAOL:01:,:xxyAO10:,:xxyOBOBAOLxyxxyxxyxdddxxxd)(0154d21023xxyyyyxyxLd)(d2112xyxy 解法解法2 取 y 为参数, 则11:,:2yyxL54d2114yy从点xxxd10的一段. ) 1, 1 ()1, 1(BA到Oyx)1 , 1(B)1, 1( A目录 上页 下页 返回 结束 yxO例例2. 计算其中 L 为

9、,:, 0aaxyBAaa(1) 半径为 a 圆心在原点的 上半圆周, 方向为逆时针方向;(2) 从点 A ( a , 0 )沿 x 轴到点 B ( a , 0 ). 解解: (1) 取L的参数方程为,d2xyL0:,sin,costtaytaxxyLd2ttadsin2203332a(2) 取 L 的方程为xyLd2ta202sinttad)sin(132334aaaxd00则则目录 上页 下页 返回 结束 例例3. 计算,dd22yxxyxL其中L为(1) 抛物线 ; 10:,:2xxyL(2) 抛物线 ;10:,:2yyxL(3) 有向折线 .:ABOAL解解: (1) 原式22xxxx

10、 d4103(2) 原式yyy222yy d5104(3) 原式yxxyxOAdd22 01)0, 1(A)1 , 1(B2yx 2xy 10(xxxd)2210(yyd)4yxxyxABdd2210dy11yxO目录 上页 下页 返回 结束 BAyxzO例例4. 设在力场作用下, 质点由沿 移动到),2,0,(kRB)0, 0,(RA.)2(AB解解: (1)zzyxxydddttkR2022d)(2) 的参数方程为kttzyRx20:,0,ABzzyxxydddktt20d试求力场对质点所作的功.;,sin,cos) 1(tkztRytRx)(222Rk222k其中 为 ),(zxyFsF

11、WdsFWd目录 上页 下页 返回 结束 例例5. 求,d)(d)(d)(zyxyzxxyzI其中,21:22zyxyx从 z 轴正向看为顺时针方向.解解: 取 的参数方程,sin,costytx)02:(sincos2tttz20Itttcos)sincos22(tttttd )sin)(cossin(costt d)cos41 (220)sin)(cos2(tt 2zyxO目录 上页 下页 返回 结束 三三. 两类曲线积分之间的联系:两类曲线积分之间的联系:,)()( tytxL :设有向平面曲线弧为设有向平面曲线弧为,),( 为为处处的的切切线线向向量量的的方方向向角角上上点点yxL L

12、LdsQPQdyPdx)coscos( 则则,)()()(cos22ttt ,)()()(cos22ttt (可以推广到空间曲线上(可以推广到空间曲线上 ) ,d)(dttx ,d)(dtty tttsd)()(d22 有向有向曲线弧曲线弧L的切向量为的切向量为)(),(ttt 目录 上页 下页 返回 结束 ,),( 为为处处的的切切线线向向量量的的方方向向角角上上点点zyx zRyQxPddd rAddAs 可用向量表示可用向量表示),(RQPA (cos ,cos,cos ) dd(d ,d ,d )rsxyz 有向曲线元有向曲线元.上的投影上的投影在向量在向量为向量为向量tAAt处处的的

13、单单位位切切向向量量上上点点),(zyx dAs 则则 sRQPd)coscoscos(推广推广 空间曲线空间曲线目录 上页 下页 返回 结束 类似地, 在空间曲线 上的两类曲线积分的联系是zRyQxPdddsRQPdcoscoscos令tAsAtd, ),(RQPA )d,d,(ddzyxs )cos,cos,(costsA dsA dstAd记 A 在 t 上的投影为目录 上页 下页 返回 结束 例例6 LyyxQxyxPd),(d),(2xy 解解 ,411cos2x .412cos2xx LyyxQxyxPd),(d),(所以所以sxxyxQyxPLd412),(),(2 把对坐标的曲

14、线积分把对坐标的曲线积分化为对弧长的曲线积分化为对弧长的曲线积分.其中其中L为沿抛物线为沿抛物线从点从点(0,0)到到(1,1). LyQxPdd LsQPd)coscos( ),2, 1(xT 目录 上页 下页 返回 结束 .)1 , 2 , 3()0 , 0 , 0(,3 ,222的直线段的直线段到点到点是由点是由点其中其中计算计算QPPQyxzyxAdsAPQ 例例7解解,2,3 tztytxQP 的直线段的参数方程为的直线段的参数方程为、过过于是于是对应于对应于终点终点对应于对应于起点起点, 1, 0 tQtPydzxzdyydxxdsTAPQPQ2223 10222)2()3(2)2

15、(33)3(dttttttdttt 1032)627(.221 oxyzPQ(3,2,1)32目录 上页 下页 返回 结束 练习练习. . 将积分yyxQxyxPLd),(d),(化为对弧长的积分,0222xyx).0 , 2()0 , 0(BO到从解:解:OyxB,22xxyxxxxyd21d2sdxyd12xxxd212sxddcos,22xx syddcosx1yyxQxyxPLd),(d),(syxQyxPLd),(),(22xx )1(x其中L 沿上半圆周目录 上页 下页 返回 结束 1. 定义kkkknkyQxP),(),(limkk10LyyxQxyxPd),(d),(2. 性质

16、(1) L可分成 k 条有向光滑曲线弧), 1(kiLiLyyxQxyxPd),(d),(iLkiyyxQxyxPd),(d),(1(2) L 表示 L 的反向弧LyyxQxyxPd),(d),(LyyxQxyxPd),(d),(对坐标的曲线积分必须注意积分弧段的方向积分弧段的方向!内容小结内容小结目录 上页 下页 返回 结束 3. 计算,)()(:tytxL: tLyyxQxyxPd),(d),(tttQttPd )(),( )(),()(t)(t 对有向光滑弧 对有向光滑弧baxxyL:, )(:xxxQxxPbad )(,)(,)(xLyyxQxyxPd),(d),(目录 上页 下页 返

17、回 结束 zzyxRyzyxQxzyxPd),(d),(d),(:,)()()(ttztytx)(, )(),(tttP)(t)(t)(t4. 两类曲线积分的联系LyQxPddsQPLdcoscoszRyQxPdddsRQPdcoscoscos)(, )(),(tttQ)(, )(),(tttRtd 对空间有向光滑弧 :目录 上页 下页 返回 结束 F原点 O 的距离成正比,思考与练习思考与练习1. 设一个质点在),(yxM处受恒指向原点,)0,(aA沿椭圆此质点由点12222byax沿逆时针移动到, ),0(bBO),(yxMxy)0 ,(aA), 0(bB提示提示:yykxxkWdd AB

18、:ABtaxcostbysin20:t, ),(yxOM F 的大小与M 到原F 的方向力F 的作用,求力F 所作的功. ),(yxkFF),(xyk 思考思考: 若题中F 的方向 改为与OM 垂直且与 y 轴夹锐角,则 目录 上页 下页 返回 结束 O)0 , 0 , 1 (A)0 , 1 , 0(B) 1 , 0 , 0(Cxyz2. 已知为折线 ABCOA(如图), 计算zyyxIddd提示提示:I001d)1 (yy10dx2)211 ( 12101d2 x1 yx1 zyyxABddzyyBCddOAxd目录 上页 下页 返回 结束 备用题备用题 1.解解:OzxyABzkLzyxzzzyyxxk222ddd:L22 tx22 ty1 tz) 10:(t101d3ttk2ln3k)1 ,2,2(A线移动到, )2,4,4(B向坐标原点, 其大小与作用点到 xOy 面的距离成反比.沿直sFWLdF)(0r) 1 , 2 , 2(ABr求 F 所作的功 W. 已知 F 的方向指一质点在力场F 作用下由点222zyxkzjyixzk目录 上页 下页 返回

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论