高频链逆变电源的设计解析_第1页
高频链逆变电源的设计解析_第2页
高频链逆变电源的设计解析_第3页
高频链逆变电源的设计解析_第4页
高频链逆变电源的设计解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 高频链逆变电源的设计摘要:首先简要地介绍了逆变电源采用高频链逆变技术的优势,然后具体针对 1000VA高频链逆变电源进行了主电路和控制方案的设计,并对设计中可能出现 的问题进行了考虑,最后给出了相应的仿真波形和实验波形,证明了该逆变电 源具有良好的性能。关键词:高频链;周波变换器;逆变器;移相控制Design of High Frequency Link Inverter Power SupplyDuan Jun, Duan Cheng-gang, Su Yan-min, Zhang Jian-rong, Bai Xiao-qingAbstract:Firstly, the advantag

2、e of the high frequency link (HFL) technology is briefly introduced. Secondly, main circuit and control scheme of the 1 000 VA HFL inverter power supply is designed. Consequently, the problem in the design is considered. Finally, the waveform of the simulation and experiments are given to prove the

3、inverter power supply has good performance.Keywords:High frequency link; Cycloconverter; Inverter; Phase-shifted control1 引言在传统的逆变电源中,由于大部分采用的都是逆变器工频变压器滤 波器的结构,使得整个逆变电源又大又笨重,难以满足人们对现代电源高功率 密度、高效率、高可靠性、小型轻量化的要求,而且由于制造工频变压器需消 耗大量的铁和铜,所以使整个逆变电源的造价很高。为了克服传统逆变器的缺 点,Mr.ESPELAG于1977年提出了高频链技术的概念,并由于高频链技术能够

4、大大减小逆变电源的重量和体积,所以成为国内外争相研究的热点。高频链技术是指利用高频开关技术使隔离耦合变压器实现高频化、小型 化、无噪声化的技术。由于U=4.44fNBS式中:U为正弦电压有效值(V);f 为正弦电压频率( Hz);N 为绕组匝数(匝);B 为铁心磁通密度( T);S 为铁心的横截面积( m2)。所以,当电压和铁心材料选定时,f与NS成反比,即f越大,NS越小,这样就 可以达到减小变压器的体积和重量的目的。本文针对电气化铁路中广泛应用的 25Hz逆变电源进行了高频链设计。2 主电路的设计随着高频链技术的不断成熟,现在从结构上主要分为二类,即高频链 DC/DC变换型和高频链周波变换

5、型。高频链DC/DC变换型就是在传统逆变电源的直流侧和逆变器之间加入一 级DC/DC变换器,由于DC/DC变换器采用的是高频变换,所以电路中使用的是 高频变压器,这样就可以省掉体积庞大的工频变压器,其电路结构如图1(a)所示。虽然DC/DC变换型实现起来比较容易,但是存在功率只能单向流动,负 载不能向电源回馈能量;三级功率变换,既使得系统 效 率 低 , 又 使 得 系 统 复 杂 , 从 而 降 低 了 系 统 的 可 靠 性 等 缺 点 。高 频 链 周 波 变 换 型 主 要 由 高 频 电 压 源 逆 变 器 、 高频变压器和周波变换器组成其丿、电路结构如图1(b)所示。与高频链DC/

6、DC型相比该逆变器实现逆变只经过两级功率变换降低了变换器的通态损耗和系统的复杂性提高了系统的效率和可靠性而且功率可以实现双向流动。本文介绍高频链周波变换型的主电路设计。(a)高频链DC/DC变换型(b)高 频 链 周 波 变 换 型图 1 两 种 高 频 链 逆 变 电 路具体实现时,高频逆变器可以采用推挽式、半桥式和全桥式,周波变换 器可以采用全波式、全桥式。考虑到输出电压和功率的设计要求,最终确定的 电路结构如图2所示。图中,U为输入直流电压,Si、S2、S3、S4组成全桥逆变 器,T为高频变压器,Ki、心Ke、K4是由2个反向串联的MOSFE组成的双向开 关,共同组成全桥式周波变化器,L

7、、C组成LC滤波器。图 2 主 电 路 的 电 路 结 构3 控制方法及其实现本文的高频链周波变换型采用移相控制方案,移相控制是近年来在全桥 变换电路拓扑中广泛应用的一种控制方式。移相控制的基本工作原理为,全桥 变换电路每一个桥臂的两个开关管互补导通,两个桥臂的开关管导通之间相差 一个相位,即所谓的移相角。通过调节此移相角的大小,来调节输出电压脉冲 宽度,达到调节相应的输出电压的目的。系统工作原理如图3所示,输入的220V/50HZ交流市电经过整流滤波后 变成300V左右的直流,然后经过全桥逆变器的高频逆变,输出25kHz相邻脉冲互为反极性的SPWPM正弦脉宽脉位调制)波,该波形含有 SPW波

8、的全部信 息,但不含25Hz调制波的频率成分,适合于高频变压器传输。SPWP波通过高频变压器隔离后,用周波变换器同步整流,把 25Hz正半周时间内的负脉冲翻转 成正脉冲,把25Hz负半周时间内的正脉冲翻转成负脉冲之后,将得到25Hz的单极性SPWMfe(如图3中u“所示波形)。SPWI波通过LC滤波,则输出光滑 的220V/25HZ的正弦交流电压。图 3 主 电 路 的 开 关 时 序为了实现上述的移相控制策略,本文采用了用模拟电路实现 PID 调节, 用数字电路CPLD(复杂可编程逻辑器件)来实现驱动信号的时序和逻辑控制的 设计方法。这种方法使得整个控制器的集成度提高,可靠性增强,而且为控制

9、 电路的设计提供了一定的灵活性。整个控制环节分为内环和外环两条控制电 路,内环为电压瞬时值比例(P)调节,外环为电压平均值的比例积分(PI)调 节。由于内环响应速度快,可以改善电压的瞬时波动造成的波形畸变,外环可 以使整体的稳压的特性变硬,从而达到良好的稳压效果。具体实现上如图4所示,输出电压U0经过反馈变压器变换得到反馈电 压,再经过精密整流电路后,与 5V的参考电压相减,得到的偏差进行 PI调 节,然后与基准正弦半波相乘得到内环瞬时电压偏差的正弦参考电压;内环的 瞬时电压反馈信号经过比例环节后,与参考电压相减,得到误差信号,误差信 号再经过P调节就直接与三角波比较,产正 SPWI波,然后输

10、入CPLD中,经过 CPLD产生MOSFE的驱动信号,其中采用 VHDL(硬件描述语言)编程来实现图 4 中虚框所示的功能分频器、地址产生器、比较器和时序逻辑发生器。图 4 控 制 电 路 图如图 3 所示本文采用的是用等腰三角波来实现双边调制。国外许多高频 链设计中通常采用的是锯齿波实现单边调制,其直边用于同步开关时序,斜边 用于脉宽调制,而在实际应用中,这种方法存在锯齿波的直边不能完全垂直而 带来的开关时序同步问题。本文所采用 CPLD进行时序设计的方法,从根本上解 决了开关时序同步的问题。4 设计中应该注意的几个问题4.1 变压器的设计变压器设计是整机设计中重要的一环,设计的好坏对整机的

11、性能有很大 的影响。由于所设计的变压器是高频变压器,因此,磁芯材料选用铁氧体。通 过计算AP值的方法来计算变压器磁芯规格和原副边匝数后,还应注意以下几 点:八、1 )通过实验反复修正确定最佳的参数;2 )尽量选用多股线,减少趋肤效应;3 )尽量将副边绕制在内层,原副边紧密绕制,以减小副边的漏感。4.2 抗偏磁饱和为了防止变压器的偏磁饱和,一方面,调整驱动脉冲死区,选择开关特 性一致的功率开关管;另一方面,在变压器的原边串联隔直电容。有关几个参 数的计算公式如下:输出电感 L 为L=0.53mH谐振频率 f R 为3f r=0.25 X fs=0.25 X 25X 10=6250Hz反射滤波电感

12、Lr为LR=X L= X 0.53mH=0.27mH隔直电容 C 为C=2.4 卩 F4.3 吸收电路的设计由于电压源高频链逆变技术存在固有的电压过冲问题,因此如何设计吸收电路,对保护功率开关管尤为重要。这里给出简便的设计方法。吸收电容 Cs 为12CS=2Coss=2X 500X 10=1000pF式中:COss为MOSFE输出电容。吸收电阻艮为Rs=67 Q消耗功率 Pdiss 为Pdiss CUf s=1000X 10_ 12 X 3002 X 25X 103=2.25W4.4 死区时间和共态导通时间为了防止全桥逆变电路一个桥臂中的上下开关管同时导通而出现直通的 情况,需要在全桥逆变电路

13、的驱动中加入死区时间。同时,为了保证当开关管 换流时,滤波电感中的电流有续流通路,要在周波变换器的驱动中加入共态导 通时间。但是由于共态导通时间也造成了变压器副边瞬间短路,将产生一个很 高的电流尖峰,所以共态导通时间不宜设置过长,为此,在变压器副边串入小 电感来抑制电流尖峰。5 仿真及其实验波形本文利用MATLAB6.1提供的SIMULINK工具包对整个系统建立了仿真模型进行仿真。仿真模型参数:输入直流电压300V,输出交流电压220V, 25Hz,额定容量1000VA开关频率25kHz,变压器变比1/1.4 ,输出滤波电感 L=0.5 mH,输出滤波电容C=20卩F ,额定负载R=45Q。仿

14、真波 形 如 图5所 示 。(a) 变 压 器 原 边 电 压 波 形(b) 变 压 器 副 边 电 压 波 形(c) 空 载 输 出 电 压 波 形(d) 带 载 输 出 电 压 波 形图 5仿 真 波 形原理样机的实验波形如图 6 所示。(a) 变压器原边电压波形100V/Div 20卩s/Div(b) 变压器副边电压波形125V/Div 20卩s/Div(c) 空 载 电 压 波 形 100V/Div 10ms/Div(d) 满 载 电 压 波 形 100V/Div 10ms/Div图 6实 验 波 形6 结语采用周波变换器高频链技术实现的逆变电源电压输出特性良好,相对于 传统的逆变电源

15、具有重量轻、体积小、低噪音、成本低的诸多优点,具有较高 的实用价值。参考文献1 P.M.Espelage,B.K.Bose.High Frequency Link Power ConverterJ.IEEE Tran.on IA,1997,13(5):388 394.2 Masato Koyama.High Frequency Link DC/AC Converter with PWM cycloco nv erter for UPSC.IEEE PESC ' 1988:748 754.3 S.R.Narayana Prakash , B.S.R.Iyengar , P.V.Ananda Mohan.A NewSinewave Inverter with High Frequency

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论