Differentiabl Functions ActiveMath可微函数 ActiveMath_第1页
Differentiabl Functions ActiveMath可微函数 ActiveMath_第2页
Differentiabl Functions ActiveMath可微函数 ActiveMath_第3页
Differentiabl Functions ActiveMath可微函数 ActiveMath_第4页
Differentiabl Functions ActiveMath可微函数 ActiveMath_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、intuition|difficulties | rules | examplesdifferentiable functions seminar hands-on math for computer scientists“saarbrcken, feb. 2nd 2005daniel beck, sebastian blohmintuition|difficulties | rules | examplesoutline solving exercises intuitively difficulties when solving the exercises general rules fo

2、r differentiability applying the rulesintuition|difficulties | rules | examplesthe exercisedetermine which of the following functions are differentiable: f(x)=x f(x)=1/x f(x)=|x-1| f(x)= x with x4 and f(x)=x/4 + 1 with x4 intuition|difficulties | rules | exampleswhen is a function f differentiable?

3、a function f is differentiable at a point xdifferentiable at a point x0 0 if: it is continuous at there exists a limit one limit of the difference quotient: a function “f” is called differentiable (in differentiable (in i i ) ) if it is diffenrentiable at every x0 i. when ist a function differentiab

4、le (over his domain i) ?000( ( )()lim()xxf xf xxx-intuition|difficulties | rules | exampleshow do i check for differentiability at x0 ? if i have a plot of the function: check if x x0 0 has exactly one tangent. has exactly one tangent. in the general case: check if f is continuous (in particular: no

5、 jump) check ifand both exist. 000000,00( ( )()( ( )()limlim()()-xxx xxxx xf xf xf xf xxxxxintuition|difficulties | rules | examplesf(x)=x differentiable over r intuition|difficulties | rules | examplesf(x) = 1/x differentiable over 0intuition|difficulties | rules | examplesf(x)=|x-1| differentiable

6、 over 1intuition|difficulties | rules | examplesf(x)= x with x4 and f(x)=x/4 + 1 with x4 depending on the visualization, non-differentiable point might not be visible at all.intuition|difficulties | rules | examplesapplying the definition example : f(x)=x so, the limes exists for all this was very e

7、asy! but what about sin(x) ? this is clearly the wrong way! 0002200000000( ( )()()()()limlimlim2()()()-xxxxxxf xf xxxxxxxxxxxxxx0 xintuition|difficulties | rules | examplesdifficultiesdoes anyone dare to calculate ? plus: we cannot possibly calculate the limit of the difference quotient for all elem

8、ents of the domain. how do i determine which points are crucial? how do i prove that i did not miss a non-differentiable point? solution : apply some cooking recipe”02200(sinsin)lim()-xxxxxxintuition|difficulties | rules | examplesgeneral rules for checking differentiability notation : predicates f

9、is differentiable at f is differentiable over i functions: range of the function f on interval i : for : for 000( ( )()lim()-xxf xf xxx( ):irangeg:id0:xd0 xx0 x0()-xdf0()xdf0 xx0 x000( ( )()lim()-xxf xf xxxintuition|difficulties | rules | examplesgeneral rules for checking differentiabilityaddition:

10、substraction :multiplication:division: ()iiid fd gdfg ()iiid fd gdfg- ()iiid fd gdf g ( )iiid fd gfdgintuition|difficulties | rules | examplesgeneral rules for checking differentiability ()idxx()()-iidfdf(cos )idx(sin)idx() where ()jidfjidfsome special casesintuition|difficulties | rules | examplesg

11、eneral rules (continued) chain rule: case splits: ( ) ( ) ( )()ijirange gjd gdfd gf( ) ( ) ( )( ) lim( ( )lim( ( )(if xk then else )-jlkkxkxkidgdfdfdff xg xdfgintuition|difficulties | rules | examplesexample sin x 22()() () (sin( ) (sin()dxxdxxdxxdxxdxkompsinmulididintuition|difficulties | rules | e

12、xamplesexample 1/x 000 (1) ( ) 1ddxdivdxintuition|difficulties | rules | examplesexample x with x4 and f(x)=x/4 + 1 with x4 44444444044( )(4)(1)( )4 (1)() lim()lim(1) 44()(1)4414- xxxxxxxxdx dxddxxddxxxdxdxdif xthen xelseintuition|difficulties | rules | examplesexample |x-1| 11111111111( )(1)(1) ( )

13、(1) (1)( (1) lim(1)lim( (1)( (1) (1) (if x1 then else )1-xxxxxxxxxidxddxdxddxdxxxdxdxdfgdx( )0) -iid if f xthenf else fabsdffails!intuition|difficulties | rules | exampleshow to explain these rule in active math? with well explained sentances! example : f+g is differentiable if f an g are differenti

14、able on i g(f) is differentiable if g is differentiable over the range of f and f is differentiable on i “if x=k then f else g” is differentiable if f and g are differentiable, and if they have the same value and the same derivation then aproching k the calculations are a good visualization of the reasoning.intuition|difficulties | rules | examplesdiscussion limits of the rule appr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论