安徽省宿松县初三数学上册期中测试卷(含答案解析)_第1页
安徽省宿松县初三数学上册期中测试卷(含答案解析)_第2页
安徽省宿松县初三数学上册期中测试卷(含答案解析)_第3页
安徽省宿松县初三数学上册期中测试卷(含答案解析)_第4页
安徽省宿松县初三数学上册期中测试卷(含答案解析)_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、安徽省宿松县2018初三数学上册期中测试卷(含答案解析)安徽省宿松县2018初三数学上册期中测试卷(含答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为a、b、c、d的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1sin30°的值是()a b c d 12抛物线y=(x2)2+3的顶点坐标是()a (2,3) b (2,3) c (2,3) d (2,3)3若反比例函数y= ,当x0时,y随x的增大而增大,则k的取值范围是()a k2 b k2

2、 c k2 d k24在4×4网格中,的位置如图所示,则tan的值为()a b c 2 d5如图,点d在abc的边ac上,添加下列一个条件仍不能判断adb与abc相似的是()a abd=c b adb=abc c bc2=cd?ac d ab2=ad?ac6在rtabc中,c=90°,ab=10,tana= ,则ac的长是()a 3 b 4 c 6 d 87反比例函数y= 的图象如图所示,则二次函数y=x2kx+k的大致图象是()a b c d8如图,菱形abcd中,点e,f分别是边ab,ad的中点,连接ce,cf,ef,若四边形abcd的面积是40cm2,则cef的面积为

3、()a 5cm2 b 10cm2 c 15cm2 d 20cm29二次函数y=ax2+bx+c(a0)的图象如图所示,其对称轴为x=1,下列结论中:ac0;2a+b=0;b24ac0;ab+c0正确的是()a b c d 10如图,在等边abc的边长为2cm,点p从点a出发,以1cm/s的速度向点c移动,同时点q从点a出发,以1cm/s的速度沿abbc的方向向点c移动,若apq的面积为s(cm2),则下列最能反映s(cm2)与移动时间t(s)之间函数关系的大致图象是()a b c d二、填空题(本大题共4小题,每小题5分,满分20分)11请写一个二次函数,使它满足下列条件:(1)函数的图象可由

4、抛物线y=x2平移得到;(2)当x1时,y随x的增大而增大你的结果是12如图,点a是反比例函数y= 图象上的一点,过点a作abx轴于点b,连接oa,若oab的面积为3,则k的值为13 如图,河坝横断面迎水坡ab的坡度i=3:4,坝高bc=4.5m,则坡面ab的长度为m14如图,四边形abcd、cefg都是正方形,点g在线段cd上,连接bg、de,de和fg相交于点o设ab=a,cg=b(ab)下列结论:bgde; ;bcgefo; 其中正确结论的序号是(把所有正确结论的序号都填在横线上)三、(本大题共2小题,每小题8分,满分16分)15计算:22 cos60°2sin45°

5、+|1 |16已知抛物线y=x2+bx+c的对称轴是直线x=1,且经过点(2,3),求这个二次函数的表达式四、(本大题共2小题 ,每小题8分,满分16分)17如图 ,在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系,请按要求完成下面的问题:(1)以图中的点o为位似中心,将abc作位似变换且同向放大到原来的两倍,得到a1b1c1;(2)若abc内一点p的坐标为(a,b),则位似变化后对应的点p的坐标是18平面直角坐标系中,矩形oabc的顶点a,c分别在坐标轴上,顶点b在第一象限内,如图所示,且oa=a,oc=b请根据下列操作,完成后面的问题【操作】(1)连接ac,ob相交

6、于点p1,则点p1的纵坐标为;(2)过点p1作p1dx轴于点d,连接bd交ac于点p2,则点p2的纵坐标为;(3)过点p2作p2ex轴于点e,连接be交ac于点p3,则点p3的纵坐标为;【问题】(1)过点p3作p3fx轴于点f,连接bf交ac于点p4,直接写出点p4的纵坐标;(2)按照上述操作进行下去,猜想点pn(n为正整数)的纵坐标是(用含n的代数式表示)五、(本大题共2小题,每小题10分,满分20分)19如图,ab、cd为两个建筑物,建筑物ab的高度为80m,从建筑物ab的顶部a点测得建筑物cd的顶部c点的俯角eac为30°,测得建筑物cd的底部d点的俯角ead为69°

7、(1)求两建筑物两底部之间的水平距离bd的长度(精确到1m);(参考数据:sin69°0.93,cos69°0.36,tan69°2.70)(2)求建筑物cd的高度(结果保留根号)20如图,在菱形abcd中,ac=6,bd=8(1)求sinabd(2)扬扬发现abc=2abd,于是她推测:sinabc=2sinabd,它的推测正确吗?请通过本题图形中的数据予以说明六、(本题满分12分)21如图,反比例函数y= 的图象与一次函数y=ax+b的图象交于点a(3,2)和b(1,n)(1)试确定反比例函数与一次函数表达式;(2)求oab的面积s;(3)结合图象,直接写出函

8、数值 ax+b时,自变量x的取值范围七、(本题满分12分)22“宿松家乐福超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y(件)与售价x(元/件)之间的函数关系如图:(1)求每天销售量y(件)与售价x(元/件)之间的函数表达式;(2)若该商品每天的利润为w(元),试确定w(元)与售价x(元/件)的函数表达式,并求售价x为多少时,每天的利润w最大?最大利润是多少?八、(本题满分14分)23如图在四边形abcd的边ab上任取一点e(点e不与ab重合),分别连接edec,可以把四边形abcd分成三个三角形,如果其中有两个三角形相似,我们就把e叫做四边形abcd的边ab上的

9、“相似点”;如果这三个三角形都相似,我们就把e叫做四边形abcd的边ab上的“强相似点”【试题再现】如图,在abc中,acb=90°,直角顶点c在直线de上,分别过点a,b作adde于点d,bede于点e求证:adcceb【问题探究】在图中,若a=b=dec=40°,试判断点e是否四边形abcd的边ab上的相似点,并说明理由;【深入探究】如图,adbc,dp平分adc,cp平分bcd交dp于点p,过点p作abad于点a,交bc于点b(1)请证明点p是四边形abcd的边ab上的一个强相似点;(2)若ad=3,bc=5,试求ab的长;安徽省宿松县2018初三数学上册期中测试卷(

10、含答案解析)参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为a、b、c、d的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1sin30°的值是()a b c d 1考点: 特殊角的三角函数值分析: 直接根据特殊角的三角函数值进行计算即可解答: 解:sin30°= 故选:a点评: 本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键2抛物线y=(x2)2+3的顶点坐标是()a (2,3) b (2,3) c (2,3

11、) d (2,3)考点: 二次函数的性质分析: 直接根据二次函数的顶点式进行解答即可解答: 解:抛物线的解析式为:y=(x2)2+3,其顶点坐标为(2,3)故选b点评: 本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键3若反比例函数y= ,当x0时,y随x的增大而增大,则k的取值范围是()a k2 b k2 c k2 d k2考点: 反比例函数的性质分析: 根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可解答: 解:反比例函数y= ,当x0时y随x的增大而增大,k+20,解得k2故选:b点评: 本题考查了反比例函数的性质对于反比例函数y= ,当k0时,在每一个象限内

12、,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大4在4×4网格中,的位置如图所示,则tan的值为()a b c 2 d考点: 锐角三角函数的定义专题: 网格型分析: 根据“角的正切值=对边÷邻边”求解即可解答: 解:由图可得,tan=2÷1=2故选c点评: 本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键5如图,点d在abc的边ac上,添加下列一个条件仍不能判断adb与abc相似的是()a abd=c b adb=abc c bc2=cd?ac d ab2=ad?ac考点: 相似三角形的判定分析: 由a是公

13、共角,利用有两角对应相等的三角形相似,即可得c与d正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得b正确,继而求得答案,注意排除法在解选择题中的应用解答: 解:a是公共角,当abd=c或adb=abc时,adbabc(有两角对应相等的三角形相似);故a与b正确;当 = ,即ab2=ac?ad时,adbabc(两组对应边的比相等且夹角对应相等的两个三角形相似);故d正确;当 = ,即bc2=cd?ac时,a不是夹角,故不能判定adb与abc相似,故c错误故选c点评: 此题考查了相似三角形的判定此题难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两

14、个三角形相似定理的应用6在rtabc中,c=90°,ab=10,tana= ,则ac的长是()a 3 b 4 c 6 d 8考点: 锐角三角函数的定义;勾股定理分析: 根据锐角三角函数正切等于对边比邻边,可得bc与ac的关系,根据勾股定理,可得ac的长解答: 解:由tana= = ,得bc=3x,ca=4x,由勾股定理,得bc2+ac2=ab2,即(3x)2+(4x)2=100,解得x=2,ac=4x=4×2=8故选:d点评: 本题考查了锐角三角函数,利用了锐角三角函数正切等于对边比邻边,还利用了勾股定理7反比例函数y= 的图象如图所示,则二次函数y=x2kx+k的大致图象

15、是()a b c d考点: 二次函数的图象;反比例函数的图象分析: 根据反比例函数图象判断出k0,然后确定出抛物线的对称轴和开口方向以及与y轴的交点,再选择答案即可解答: 解:反比例函数y= 的图象位于第二四象限,k0,二次函数图象开口向上,二次函数图象的对称轴为直线x= = k0,x=0时,y=k0,所以,二次函数图象与y轴的负半轴相交,纵观各选项,只有b选项图形符合故选b点评: 本题考查了二次函数图象,反比例函数图象,熟练掌握两函数图象的特征并确定出k的取值是解题的关键8如图,菱形abcd中,点e,f分别是边ab,ad的中点,连接ce,cf,ef,若四边形abcd的面积是40cm2,则ce

16、f的面积为()a 5cm2 b 10cm2 c 15cm2 d 20cm2考点: 菱形的性质分析: 如图,作辅助线;证明acbd,ao=co(设为);证明ef= bd,aoef;由abdaef,得到 =2,进而得到cm=1.5;运用面积公式即可解决问题解答: 解:如图,连接ac,分别交ef、bd于点m、o;四边形abcd为菱形,acbd,ao=co(设 为);点e,f分别是边ab,ad的中点,ef为abd的中位线,efbd,ef= bd,aoef;abdaef, =2,om= oa=0.5,cm=1.5, ,sabcd=40,sefc=15(cm2)故选c点评: 该题主要考查了菱形的性质、三角

17、形的中位线定理、相似三角形的判定及其性质等几何知识点及其应用问题;解题的关键是作辅助线;灵活运用菱形的性质、三角形的中位线定理、相似三角形的判定等知识点来分析、解答9二次函数y=ax2+bx+c(a0)的图象如图所示,其对称轴为x=1,下列结论中:ac0;2a+b=0;b24ac0;ab+c0正确的是()a b c d 考点: 二次函数图象与系数的关系分析: 由抛物线开口方向得到a0,由抛物线与y轴交点位置得到c0,则可对进行判断;利用抛物线的对称方程可对进行判断;由抛物线与x轴的交点个数可对进行判断;由于x=1时函数值小于0,则可对进行判断解答: 解:抛物线开口向下,a0,抛物线与y轴交点位

18、于y轴正半轴,c0,ac0,所以错误;抛物线的对称轴为直线x= =1,b=2a,即2a+b=0,所以正确;抛物线与x轴有两个不同的交点,b24ac0,所以正确;x=1时,y0,ab+c0,所以错误故选b点评: 本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开 口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定

19、:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点10如图,在等边abc的边长为2cm,点p从点a出发,以1cm/s的速度向 点c移动,同时点q从点a出发,以1cm/s的速度沿abbc的方向向点c移动,若apq的面积为s(cm2),则下列最能反映s(cm2)与移动时间t(s)之间函数关系的大致图象是()a b c d考点: 动点问题的函数图象分析: 当0t2和2t4时,分别求出函数解析式,根据函数的性质分析即可得出结论解答: 解:当0t2时,s= ,此函数抛物线开口向上,且函数图象为抛物 线右侧的一部分;当2t4时,s

20、= ,此函数图象是直线的一部分,且s随t的增大而减小所以符合题意的函数图象只有c故选:c点评: 本题主要考查了动点问题的函数图形,分段讨论,求出函数表达式是解决问题的关键二、填空题(本大题共4小题,每小题5分,满分20分)11请写一个二次函数,使它满足下列条件:(1)函数的图象可由抛物线y=x2平移得到;(2)当x1时,y随x的增大而增大你的结果是y=x22x或y=x2x考点: 二次函数图象与几何变换专题: 开放型分析: 可由抛物线y=x2平移得到的抛物线解析式中二次项系数是1;当x1时,y随x的增大而增大,则对称轴小于1解答: 解:函数的图象可由抛物线y=x2平移得到,当x1时,y随x的增大

21、而增大,该函数的解析式为y=x22x或y=x2x故答案是:y=x22x或y=x2x点评: 本题考查了二次函数图象与几何变换注意,根据(2)可以得到对称轴小于1是解题的难点12如图,点a是反比例函数y= 图象上的一点,过点a作abx轴于点b,连接oa,若oab的面积为3,则k的值为6考点: 反比例函数系数k的几何意义分析: 过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积s是个定值,即s= |k|解答: 解:根据题意可知:saob= |k|=3,又反比例函数的图象位于第一象限,k0,则k=6故答案为:6点评: 本题考查反比例函数系数k的几何意义,过双曲线上的任意一

22、点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|本知识点是2018届中考的重要考点,同学们应高度关注13 如图,河坝横断面迎水坡ab的坡度i=3:4,坝高bc=4.5m,则坡面ab的长度为7.5m考点: 解直角三角形的应用-坡度坡角问题分析: 在rtabc中,已知坡面ab的坡比以及铅直高度bc的值,通过解直角三角形即可求出斜面ab的长解答: 解:在rtabc中,bc=4.5米,tana=3:4;ac=bc÷tana=6米,ab= =7.5米故答案为:7.5点评: 此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键14如图,四边形abcd

23、、cefg都是正方形,点g在线段cd上,连接bg、de,de和fg相交于点o设ab=a,cg=b(ab)下列结论:bgde; ;bcgefo; 其中正确结论的序号是(把所有正确结论的序号都填在横线上)考点: 相似三角形的判定与性质;正方形的性质分析: 延长bg交de于点h由四边形abcd、cefg都是正方形,得到bc=dc,cg=ce,bcg=dce=90°,通过bcgdce,可证得正确;由efcd,证得dgodce,可得 ,而不是 ,错误;由f=bcd=90°,cbg=cde=feo,得到bcgefo,故正确;根据efodgo,即可得到结果(ab) 2sefo=b2sdg

24、o,故正确解答: 证明:延长bg交d e于点h四边形abcd、cefg都是正方形,bc=dc,cg=ce,bcg=dce=90°,在bcg和dce中,bcgdce(sas),cde=cbg,dgh=bgc,bcg=dhg=90°,即bgde,故正确;efcd,gde=feo,fdce=90°,dgodce, ,而不是 ,故错误;f=bcd=90°,cbg=cde=feo,bcgefo,故正确;efodgo, = = ,(ab)2sefo=b2sdgo,故正确故答案为:点评: 本题考查了相似三角形的判定和性质,正方形的性质,正确的作出辅助线是解题的关键三、

25、(本大题共2小题,每小题8分,满分16分)15计算:22 cos60°2sin45°+|1 |考点: 实数的运算;负整数指数幂;特殊角的三角函数值专题: 计算题分析: 原式第一项利用负指数幂法则计算,第二、三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果解答: 解:原式= × 2× + 1= + +1=1点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键16已知抛物线y=x2+bx+c的对称轴是直线x=1,且经过点(2,3),求这个二次函数的表达式考点: 待定系数法求二次函数解析式分析: 由抛物线的一般形式可知

26、:a=1,由对称轴方程x= ,可得一个等式 ,然后将点(2,3)代入y=x2+bx+c即可得到等式4+2b+c=3,然后将联立方程组解答即可解答: 解:根据题意,得: ,解得 ,所求函数表达式为y=x22x+5点评: 此题考查了用待定系数法求二次函数的解析式,解题的关键是:熟练掌握待定系数法及对称轴表达式x= 四、(本大题共2小题,每小题8分,满分16分)17如图,在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系,请按要求完成下面的问题:(1)以图中的点o为位似中心,将abc作位似变换且同向放大到原来的两倍,得到a1b1c1;(2)若abc内一点p的坐标为(a,b),则

27、位似变化后对应的点p的坐标是(2a,2b)考点: 作图-位似变换分析: (1)由以图中的点o为位似中心,将abc作位似变换且同向放大到原来的两倍,可得a1b1c1的坐标,继而画出a1b1c1;(2)由(1)可得a1b1c1与abc的位似比为2:1,继而可求得位似变化后对应的点p的坐标解答: 解:(1)如图:(2)以点o为位似中心,将abc作位似变换且同向放大到原来的两倍,且abc内一点p的坐标为(a,b),位似变化后对应的点p的坐标是:(2a,2b)故答案为:(2a,2b)点评: 此题考查了位似图形的性质与位似变换此题难度不大,注意掌握位似图形的性质是解此题的关键18平面直角坐标系中,矩形oa

28、bc的顶点a,c分别在坐标轴上,顶点b在第一象限内,如图所示,且oa=a,oc=b请根据下列操作,完成后面的问题【操作】(1)连接ac,ob相交于点p1,则点p1的纵坐标为 a;(2)过点p1作p1dx轴于点d,连接bd交ac于点p2,则点p2的纵坐标为 a;(3)过点p2作p2ex轴于点e,连接be交ac于点p3,则点p3的纵坐标为 a;【问题】(1)过点p3作p3fx轴于点f,连接bf交ac于点p4,直接写出点p4的纵坐标;(2)按照上述操作进行下去,猜想点pn(n为正整数)的纵坐标是 (用含n的代数式表示)考点: 四边形综合题分析: 【操作】(1)由矩形的性质得出aoc=90°

29、,oa=bc,oabc,p1a=p1c= ac,p1o=p1b= ob,证出p1d是aoc的中位线,得出p1d= oa= a即可;(2)由平行线得出dp1p2bcp2,得出对应边成比例 = ,求出p2e即可;(3)同(2),即可得出结果;【问题】(1)由【操作】(1)(2)(3)得出规律,即可得出结果;(2)由以上得出规律,即可得出结果解答: 解:【操作】(1)四边形oabc是矩形,aoc=90°,oa=bc=a,oabc,p1a=p1c= ac,p1o=p1b= ob,p1dx轴,p1dao,p1d是aoc的中位线,p1d= oa= a,点p1的纵坐标为 a;故答案为: a;(2)

30、p1doa,oabc,p1dbc,dp1p2bcp2, = ,p1dx轴,p2ex轴,p2ep1 d, = ,p2e= × a= a,点p2的纵坐标为 a;故答案为: a;(3)同(2)可得:点p3的纵坐标为 a;故答案为: a;【问题】(1)由:【操作】(1)(2)(3)得出规律,点p4的纵坐标为 a;(2)由以上得出规律:点pn(n为正整数)的纵坐标是 ;故答案为: 点评: 本题是四边形综合题目,考查了矩形的性质、三角形中位线定理、相似三角形的判定与性质、平行线的判定等知识;本题有一定难度,综合性强,需要运用三角形中位线定理和三角形相似才能得出结果,得出规律五、(本大题共2小题,

31、每小题10分,满分20分)19如图,ab、cd为两个建筑物,建筑物ab的高度为80m,从建筑物ab的顶部a点测得建筑物cd的顶部c点的俯角eac为30°,测得建筑物cd的底部d点的俯角ead为69°(1)求两建筑物两底部之间的水平距离bd的长度(精确到1m);(参考数据:sin69°0.93,cos69°0.36,tan69°2.70)(2)求建筑物cd的高度(结果保留根号)考点: 解直角三角形的应用-仰角俯角问题分析: (1)先根据平行线的性质得出adb=69°,再由tan69°= 即可得出结论;(2)先根据平行线的性质得

32、出acf=30°,由tan30°= 得出af的长,故可得出bf的长,进而得出结论解答: 解:(1)aebd,ead=69°,在rtabd中,adb=69°,tan69°= ,bd= bd 30(m);(2)过点c作cfab于点f,在rtacf中,acf=30°,cf=bd30,afcf,eac=30°,acf=30°tan30°= ,af=cf?tan30°=30× ,cd=bf=8010 (m)点评: 本题考查的是解直角三角形的应用仰角俯角问题,根据题意作出辅助线构造出直角三角形是解

33、答此题的关键20如图,在菱形abcd中,ac=6,bd=8(1)求sinabd(2)扬扬发现abc=2abd,于是她推测:sinabc=2sinabd,它的推测正确吗?请通过本题图形中的数据予以说明考点: 菱形的性质;勾股定理;解直角三角形分析: (1)由菱形的性质可得acbd,ao=3,bo=4,abo是直角三角形,再利用勾股定理可得到ab=5,再利用正弦的定义即可求得sinabd的值;(2)作aebc,构筑直角三角形abe,利用平行四边形的面积求得ae的长度,再在直角三角形abe中,利用正弦的定义即可求得sinabc,从而可证sinabc与2sinabd不相等解答: 解:(1)设ac、bd

34、交于点o,则aobo,ao=3,bo=4,根据勾股定理得 ,sinabd= (2)不正确理由:如图,作aebc,垂足为e,菱形abcd的面积= ,即 ,得 ,所以 由(1)得sinabd= ,2sinabd=2× = sinabc,即扬扬的推测不正确点评: 本题主要考查菱形的性质,面积公式及锐角三角函数中正弦的定义,掌握好菱形的性质和正弦定义是解题的关键六、(本题满分12分)21如图,反比例函数y= 的图象与一次函数y=ax+b的图象交于点a(3,2)和b(1,n)(1)试确定反比例函数与一次函数表达式;(2)求oab的面积s;(3)结合图象,直接写出函数值 ax+b时,自变量x的取

35、值范围考点: 反比例函数与一次函数的交点问题专题: 数形结合分析: (1)把点点a的坐标代入y= 就可求出反比例函数表达式,然后把点b的坐标代入反比例函数表达式,就可求出点b的坐标,然后把a、b两点的坐标代入y=ax+b,就可求出一次函数表达式;(2)设一次函数y=2x4的图象与y轴交点为c,运用割补法将soab转化为soac+sobc,只需求出oc长就可解决问题;(3)运用数形结合的思想,结合图象就可解决问题解答: 解:(1)点a(3,2)在y= 的图象上,2= ,解得:k=6,反比例函数表达式为y= ;点b(1,n)在y= 的图象上,n= =6,根据题意,得,解得: ,一次函数表达式为y=

36、2x4;(2)设一次函数y=2x4的图象与y轴交点为c,当x=0时,y=04=4,则点c坐标为(0,4),soab=soac+sobc= ×4×3+ ×4×1=8;oab的面积为8;(3)结合图象可得:当1x0或x3时,函数值 ax+b点评: 本题考查的是有关反比例函数与一次函数交点问题,在解决问题的过程中,用到待定系数法、割补法等重要的数学方法,还用到数形结合的思想,突出了对数学思想方法的考查,是一道好题七、(本题满分12分)22“宿松家乐福超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y(件)与售价x(元/件)之间的函数关

37、系如图:(1)求每天销售量y(件)与售价x(元/件)之间的函数表达式;(2)若该商品每天的利润为w(元),试确定w(元)与售价x(元/件)的函数表达式,并求售价x为多少时,每天的利润w最大?最大利润是多少?考点: 二次函数的应用分析: (1)分别利用当20x40时,设y=ax+b,当40x 60时,设y=mx+n,利用待定系数法求一次函数解析式即可;(2)利用(1)中所求进而得出w(元)与售价x(元/件)的函数表达式,进而求出函数最值解答: 解:(1)分两种情况:当20x40时,设y=ax+b,根据题意,得 ,解得 ,故y=x+20;当40x60时,设y=mx+n,根据题意,得 ,解得 ,故y

38、=2x+140;故每天销售量y(件)与售价x(元/件)之间的函数表达式是:y= (2)w= ,当20x40时,w=x2400,由于10抛物线开口向上,且x0时w随x的增大而增大,又20x40,因此当x=40时,w最大值=402400=1200;当40x60时,w=2x2+180x2800=2(x45)2+1250,由于20,抛物线开口向下,又40x60,所以当x=45时,w最大值=1250综上所述,当当x=45时,w最大值=1250点评: 此题主要考查了二次函数的应用以及一次函数的应用,利用分段函数求出是解题关键八、(本题满分14分)23如图在四 边形abcd的边ab上任取一点e(点e不与ab

39、重合),分别连接edec,可以把四边形abcd分成三个三角形,如果其中有两个三角形相似,我们就把e叫做四边形abcd的边ab上的“相似点”;如果这三个三角形都相似,我们就把e叫做四边形abcd的边ab上的“强相似点”【试题再现】如图,在abc中,acb=90°,直角顶点c在直线de上,分别过点a,b作adde于点d,bede于点e求证:adcceb【问题探究】在图中,若a=b=dec=40°,试判断点e是否四边形abcd的边ab上的相似点,并说明理由;【深入探究】如图,adbc,dp平分adc,cp平分bcd交dp于点p,过点p作abad于点a,交bc于点b(1)请证明点p

40、是四边形abcd的边ab上的一个强相似点;(2)若ad=3,bc=5,试求ab的长;考点: 相似形综合题分析: 【试题再现】根据已知条件证得bce=cad,由adc=ceb=90°,于是得到adcceb【问题探究】点e是四边形abcd的边ab上的相似点由dec=40°,得到dea+ceb=140°;根据a=40°,得到ade+aed=140°,于是得到ade=ceb,推出adebec,同时得到结论;【深入探究】(1)根据adbc,得到adc+bcd=180°,由于dp平分adc,cp平分bcd,于是得到cdp+dcp= (adc+bc

41、d)=90°,由于dpc=a=b=90°,adp=cdp,有一定的adppdc,同理bpcpdc,即点p是四边形abcd的边ab上的一个强相似点(2)过点p作pedc于点e,过点d作dfbc于点f,则四边形abfd是矩形,得到df=ab,推出adpedp,得到ad=de,同理cbpcep,得到bc=ec,于是得到dc=ad+bc=8在rtcdf中,cf=bcbf=bcad=53=2,由勾股定理,得df= ,即可得到结论解答: 解答:【试题再现】acb=90°,acd+bce=90°,adde,acd+cad=90°,bce=cad,adc=ceb=90°,adcceb【问题探究】点e是四边形abcd的边ab上的相似点理由如下:dec=40°,dea+ ceb=140°;a=40°,ade+aed=140°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论