版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1页(共25页)2016年浙江省衢州市中考数学试卷一、选择题(本题有 10 小题,每小题 3 分,共 30 分)1.( 3 分)(2016?衢州)在心-1,- 3, 0 这四个实数中,最小的是()A .心 B. - 1 C.- 3D. 02.( 3 分)(2016?衢州)据统计,2015 年 十?一”国庆长假期间,衢州市共接待国内外游客 约319 万人次,与 2014 年同比增长 16.43%,数据 319 万用科学记数法表示为(A . 3.19X105B . 3.19X106C. 0.319XI07D. 319 XI063.(3 分)(2016?衢州)如图,是由两个相同的小正方体和一个圆锥
2、体组成的立体图形,其 俯视图是()5.( 3 分)(2016?衢州)如图,在?ABCD 中,M 是 BC 延长线上的一点,若 / A=135 则 / MCD的度数是()4D- jlsewA. 45 B. 55 C. 65 D. 756.( 3 分)(2016?衢州)在某校 我的中国梦”演讲比赛中,有 7 名学生参加决赛,他们决赛 的最终成绩各不相同, 其中一名学生想要知道自己能否进入前 3 名,他不仅要了解自己的成 绩,还要了解这 7 名学生成绩的()A .众数 B .方差 C .平均数 D .中位数7. ( 3 分)(2016?衢州)二次函数2y=ax +bx+c (a 用)图象上部分点的坐
3、标(x, y)对应值列表如下:x-3- 2-10 1y-3- 2-3-6 -11 则该函数图象的对称轴是()A .直线 x= - 3B.直线 x= - 2C.直线 x= - 1D.直线 x=0&(3 分)(2016?衢州)已知关于x 的兀二次方程x2- 2x- k=0 有两个不相等的实数根,则实数 k 的取值范围是()A . k 昌 B . k 1 C . k A 1D .k -1第2页(共25页)9.( 3 分)(2016?衢州)如图,AB 是OO 的直径,C 是OO 上的点,过点 C 作OO 的切线/ A=30 则 sin / E 的值为(D.10. (3 分)(2016?衢州)如
4、图,在 ABC 中,AC=BC=25 , AB=30 , D 是 AB 上的一点(不 与A、B 重合),DE 丄 BC,垂足是点 E,设 BD=x,四边形 ACED 的周长为 y,则下列图象能大致反映 y 与 x 之间的函数关系的是()11.(4 分)(2016?衢州)当 x=6 时,12.(4 分)(2016?衢州)二次根式一严-叫中字母 x 的取值范围是 _13.(4 分)(2016?衢州)某中学随机地调查了 50 名学生,了解他们一周在校的体育锻炼时 间,结果如下表所示:时间(小时)5678人数1015205则这 50 名学生这一周在校的平均体育锻炼时间是 _小时.14.(4 分)(20
5、16?衢州)已知直角坐标系内有四个点0( 0, 0), A ( 3, 0) , B (1, 1),、填空题(本题有 6 小题,每小题4 分,共 24 分)交 AB 的延长线于点 E,若A.分式的值等于第3页(共25页)C(x, 1),若以 O, A , B , C 为顶点的四边形是平行四边形,则x=_ .15. (4 分)(2016?衢州)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长 50m),中间用两道墙隔开(如图)已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为 _ m2.16. (4 分)(2016?衢州)如图,正方形 ABCD 的顶点
6、 A , B 在函数 y 丄(x 0)的图象上,点 C, D 分别在 x 轴,y 轴的正半轴上,当 k 的值改变时,正方形 ABCD 的大小也随之改变.(1 )当 k=2 时,正方形 ABCD 的边长等于 _.(2)当变化的正方形 ABCD 与(1)中的正方形 A B C D 有重叠部分时,k 的取值范围 是.1 V( dDAr尸、Dr2x-0C C三、解答题(本题有 8 小题,第 17-19 小题每小题 6 分,第 20-21 小题每小题 6 分,第 22-23 小题每小题 6 分,第 24 小题 12 分,共 66 分,请务必写出解答过程)17.(6 分)(2016?衢州)计算:|- 3|
7、約-(-1)2+( )0.18. (6 分)(2016?衢州)如图,已知 BD 是矩形 ABCD 的对角线.(1) 用直尺和圆规作线段 BD 的垂直平分线,分别交 AD、BC 于 E、F (保留作图痕迹, 不写作法和证明).(2)连结 BE , DF,问四边形 BEDF 是什么四边形?请说明理由.19. (6 分)(2016?衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4 万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电 30 度,其它天气平均每天可发电 5 度,已知某月(按 30 天计)共发电 550 度.(1 )求这个月晴天的天数.(2)已知该家庭每月平均用电量为150 度,若按每月发
8、电 550 度计,至少需要几年才能收回成本(不计其它费用,结果取整数)第4页(共25页)20. (8 分)(2016?衢州)为深化义务教育课程改革, 满足学生的个性化学习需求,某校就 学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1 )求扇形统计图中 m 的值,并补全条形统计图;(2) 在被调查的学生中,随机抽一人,抽到选体育特长类”或艺术特长类”的学生的概率 是多少?(3) 已知该校有 800 名学生,计划开设 实践活动类”课程每班安排 20 人,问学校开设多少 个实践活动类”课
9、程的班级比较合理?21.( 8 分)(2016?衢州)如图,AB 为OO 的直径,弦 CD 丄 AB,垂足为点 P,直线 BF 与222.(10 分)(2016?衢州)已知二次函数 y=x +x 的图象,如图所示(1) 根据方程的根与函数图象之间的关系, 将方程 x2+x=1 的根在图上近似地表示出来(描点),并观察图象,写出方程x2+x=1 的根(精确到 0.1).(2) 在同一直角坐标系中画出一次函数y=:x+上的图象,观察图象写出自变量x 取值在什2 2么范围时,一次函数的值小于二次函数的值.(3)如图,点 P 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法, 使平移后A
10、D 的延长线交于点 F,且/ AFB= / ABC .(1)求证:直线 BF 是OO 的切线.第5页(共25页)二次函数图象的顶点落在P 点上,写出平移后二次函数图象的函数表达式,并判断点 P 是否在函数丫=丄x+二的图象上,请说明理由.2 223.(10 分)(2016?衢州)如图 1,我们把对角线互相垂直的四边形叫做垂美四边形.(1 )概念理解:如图 2,在四边形 ABCD 中,AB=AD,CB=CD,问四边形 ABCD 是垂美 四边形吗?请说明理由.(2) 性质探究:试探索垂美四边形 ABCD 两组对边 AB,CD 与 BC,AD 之间的数量关系. 猜想结论:(要求用文字语言叙述) _写
11、出证明过程(先画出图形,写出已知、求证)(3) 问题解决:如图 3,分别以 Rt ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE,连接 CE, BG, GE,已知 AC=4 , AB=5,求 GE 长.24.(12 分)(2016?衢州)如图 1,在直角坐标系 xoy 中,直线 I: y=kx+b 交 x 轴,y 轴于 点 E, F,点 B 的坐标是(2, 2),过点 B 分别作 x 轴、y 轴的垂线,垂足为 A、C,点 D 是 线段 CO 上的动点,以 BD 为对称轴,作与 BCD 或轴对称的 BCD .(1 )当/ CBD=15 时,求点 C 的坐标.
12、(2)当图 1 中的直线 l 经过点 A,且 k= - 时(如图 2),求点 D 由 C 到 O 的运动过程中,3|线段 BC 扫过的图形与OAF 重叠部分的面积.(3)当图 1 中的直线 I 经过点 D, C 时(如图 3),以 DE 为对称轴,作于DOE 或轴对称 的厶 DOE,连结 OC, OO,问是否存在点 D,使得 DOE与厶 COO相似?若存在,求出 k、b 的值;若不存在,请说明理由.图1圏2圉3第5页(共25页)第6页(共25页)第9页(共25页)2016 年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本题有 10 小题,每小题 3 分,共 30 分)1.( 3 分)
13、(2016?衢州)在,-1,- 3, 0 这四个实数中,最小的是()A .心 B. - 1 C.- 3D. 0【分析】根据实数的大小比较法则(正数都大于 0,负数都小于 0,正数大于一切负数,两 个负数比较大小,绝对值大的反而小)比较即可.【解答】解:/ - 3V-1v0V :,最小的实数是-3,故选 C.【点评】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,注意:正数都大于 0,负数都小于 0,正数大于一切负数,两个负数比较大小,绝对值大的反 而小.2.( 3 分)(2016?衢州)据统计,2015 年 十?一”国庆长假期间,衢州市共接待国内外游客 约319 万人次,
14、与 2014 年同比增长 16.43%,数据 319 万用科学记数法表示为(A . 3.19X103 4 5B . 3.19X106C. 0.319XI07D. 319 XI06【分析】科学记数法的表示形式为aX0n的形式,其中 1 1 C. k A 1 D . k - 1【分析】根据判别式的意义得到 = (- 2)2+4k0,然后解不等式即可.【解答】 解:/关于 x 的一元二次方程 x2- 2x - k=0 有两个不相等的实数根,2 = (- 2)2+4k 0,解得 k- 1.故选:D.【点评】此题考查了一元二次方程根的分布,一元二次方程ax2+bx+c=0 (a 诧)的根的判别式厶=b2
15、- 4ac:当厶0,方程有两个不相等的实数根;当 =0,方程有两个相等的实数根; 当v0,方程没有实数根./ CE 是OO 切线, OC 丄 CE,/ / A=30 / BOC=2 / A=60 / E=90 - / BOC=30 sin / E=sin30 =.9. ( 3 分)(2016?衢州)如图,AB 是OO 的直径,C 是OO 上的点,过点 C 作OO 的切线/ A=30 则 sin / E 的值为()【分析】的度数,2首先连接继而求得解:连接V33CE 是OO 切线,可证得 OC 丄 CE,又由圆周角定理, 求得/ BOC2OC,由/E 的度数,然后由特殊角的三角函数值,求得答案.
16、OC,D.第12页(共25页)2故选 A .第13页(共25页)【点评】此题考查了切线的性质、 圆周角定理以及特殊角的三角函数值.注意准确作出辅助线是解此题的关键.10.(3 分)(2016?衢州)如图,在 ABC 中,AC=BC=25 , AB=30 , D 是 AB 上的一点(不 与A、B 重合),DE 丄 BC,垂足是点 E,设 BD=x,四边形 ACED 的周长为 y,则下列图象 能大致反映y 与 x 之间的函数关系的是()【分析】 由厶 DEBCMB,得一!二匸=,求出 DE、EB,即可解决问题.BC血班【解答】 解:如图,作 CM 丄 AB 于 M ./ CA=CB , AB=30
17、 , CM 丄 AB , AM=BM=15 , CM=血严 _ 町 2=20/ DE 丄 BC , /DEB=/CMB=90/ZB=/B,DEB CMB,43DE律-EBP -四边形 ACED 的周长为 y=25+ ( 25-.);+30 - x=-十 x+80.第14页(共25页)555/ 0vxv30,第15页(共25页)图象是 D .故选 D .关键是构建函数关系式,注意自变量的取值范围,属于中考常考题型.二、填空题(本题有 6 小题,每小题 4 分,共 24 分)11. (4 分)(2016?衢州)当 x=6 时,分式的值等于 -1【分析】直接将 x 的值代入原式求出答案.【解答】 解
18、:当 x=6 时,一=-1.1 - K 1-6-故答案为:-1.【点评】此题主要考查了分式的值,正确将x 的值代入是解题关键.12. (4 分)(2016?衢州)二次根式沖字母 x 的取值范围是 x 绍.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当 x - 3 为时,二次根式寸玄一 3 有意义,则 x 為;故答案为:x 绍.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.13. (4 分)(2016?衢州)某中学随机地调查了50 名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数101520
19、5则这 50 名学生这一周在校的平均体育锻炼时间是6.4 小时.【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.故答案为:6.4.【点评】此题考查了加权平均数, 用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.【点评】本题考查函数图象、等腰三角形的性质、相似三角形的判定和性质等知识,解题的【解答】牛:;.第16页(共25页)14. (4 分)(2016?衢州)已知直角坐标系内有四个点0( 0, 0), A ( 3, 0) , B (1, 1),C(x, 1),若以 O, A , B , C 为顶点的四边形是平行四边形,则x= 4
20、或- 2 .【分析】分别在平面直角坐标系中确定出A、B、O 的位置,再根据两组对边分别平行的四边形是平行四边形可确定 C 的位置,从而求出 x 的值.【解答】 解:根据题意画图如下:以 O, A , B, C 为顶点的四边形是平行四边形,则C (4, 1)或(-2, 1),则 x=4 或-2;故答案为:4 或-2.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.15. (4 分)(2016?衢州)某农场拟建三间长方形种牛饲养室, 饲养室的一面靠墙(墙长 50m),中间用两道墙隔开(如图)已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室
21、的总占地面积的最大值为432 m2.【分析】要求这三间长方形种牛饲养室的总占地面积的最大值,可设总占地面积为S,中间墙长为 x,根据题目所给出的条件列出S 与 x 的关系式,再根据函数的性质求出 S 的最大值.【解答】 解:如图,设设总占地面积为S ( m2) , CD 的长度为 x ( m),由题意知:AB=CD=EF=GH=x ,/ BH=48 - 4x,/ 0 0, 0 x jjUG【点评】本题考查实际问题与二次函数最值,需要根据题目列出函数关系式,然后利用函数第17页(共25页)的性质求出该问题的最值.16. (4 分)(2016?衢州)如图,正方形 ABCD 的顶点 A , B 在函
22、数 y 丄(x 0)的图象上, 点 C,D 分别在 x 轴,y 轴的正半轴上,当 k 的值改变时,正方形 ABCD 的大小也随之改变.(1 )当 k=2 时,正方形 ABCD 的边长等于-:_.(2)当变化的正方形 ABCD 与(1)中的正方形 A B C D 有重叠部分时,k 的取值范围是【分析】(1)过点 A 作 AE 丄 y 轴于点 E,过点 B 丄 x 轴于点 F,由正方形的性质可得出A D =DCA D C =90,”通过证 A ED D OC 可得出 OD =EA;OC =ED ,”设 OD =a, OC =b,由此可表示出点 A 的坐标,同理可表示出 B 的坐标,禾 U 用反比例
23、函数图象上点的坐 标特征即可得出关于 a、b 的二元二次方程组,解方程组即可得出a、b 值,再由勾股定理即可得出结论;(2)由(1)可知点 A 、B 、C 、D 的坐标,利用待定系数法即可求出直线A B 、C D 的解析式,设点 A 的坐标为(m, 2m),点 D 坐标为(0, n),找出两正方形有重叠部分的临界 点,由点在直线上,即可求出m、n 的值,从而得出点 A 的坐标,再由反比例函数图象上点的坐标特征即可得出 k 的取值范围.【解答】解:(1)如图,过点 A 作 AE 丄 y 轴于点 E,过点 B 丄 x 轴于点 F,则/ A ED =90.1yI1DKEDr/ 2XX0C FC4 兀
24、四边形 A B C D 为正方形, A D =D C , / A D C =90 , / OD C + / ED A =90 / OD C + / OC D =90 / ED A = / OC D 在厶 A ED 和厶 D OC 中,fZEDyX=Z0CyDvBD?=ZDy0C二A D V第18页(共25页)AEDBADOC(AAS).OD =EA , OC =ED同理 B FC 9C OD.设 OD =a, OC =b,贝 U EA =FC =OD =a, ED =FB =OC =b,即点 A (a, a+b),点 B (a+b, b).点 A、B 在反比例函数沪二的图象上,Ifa (a+b
25、) =2 m在 Rt C OD 中,/ C OD =90 OD =OC =1 , CD=二;-=二.故答案为::.(2)设直线 A B 解析式为 y=kix+bi,直线 C D 解析式为 y=k2+b2, /点 A ( 1, 2),点 B (2, 1),点 C (1, 0),点 D ( 0, 1),2=k14-b! ( O=k2-b2 和(*,1二2ki+tj l=b2直线 A B 解析式为 y= - x+3,直线 C D 解析式为 y= - x+1 .设点 A 的坐标为(m, 2m),点 D 坐标为(0, n).当点 D 在直线 A B 上时,有 n=3,此时点 A 的坐标为(3, 6),
26、k=3 6=18.综上可知:当变化的正方形 ABCD 与(1)中的正方形 A B C D 有重叠部分时,k 的取值范 围为三夯(WI8.故答案为:纟 1 时,一次函数的值小于二次函数的值.(3)先向上平移 兰个单位,再向左平移 二个单位,平移后的顶点坐标为P (- 1, 1).同2平移后的表达式为 y=(x+1)2+1,即 y=x2+2x+2 .点 P 在 y=_x+的函数图象上.2 2理由:T把 x= 1 代入得 y=1 ,点 P 的坐标符合直线的解析式.点 P 在直线 y=x+卫的函数图象上.2 2【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用坐标轴上点的坐标特点、点的坐标与
27、函数解析式的关系,函数与方程、不等式的关系,求得抛物线与 x 轴的交点坐标,确定出单位长度的大小以及数形结合思想的应用是解题的关键.23.(10 分)(2016?衢州)如图 1,我们把对角线互相垂直的四边形叫做垂美四边形.(1 )概念理解:如图 2,在四边形 ABCD 中,AB=AD , CB=CD,问四边形 ABCD 是垂美 四边形吗?请说明理由.(2)性质探究:试探索垂美四边形 ABCD 两组对边 AB , CD 与 BC, AD 之间的数量关系. 猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等写出证明过程(先画出图形,写出已知、求证)(3)问题解决:如图 3,分别以 Rt
28、 ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG【分析】(1)根据垂直平分线的判定定理证明即可;第27页(共25页)(2)根据垂直的定义和勾股定理解答即可;第28页(共25页)(3 )根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】 解:(1)四边形 ABCD 是垂美四边形.证明:/ AB=AD ,点 A 在线段 BD 的垂直平分线上,/ CB=CD ,点 C 在线段 BD 的垂直平分线上,直线 AC 是线段 BD 的垂直平分线, AC 丄 BD,即四边形 ABCD 是垂美四边形;(2 )猜想结论:垂美四边形的两组对边的平方和相等.如图 2,已知四边形 ABCD
29、 中,AC 丄 BD,垂足为 E,2 2 2 2求证:AD +BC =AB +CD证明:/ AC 丄 BD , / AED= / AEB= / BEC= / CED=90 由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,2 2 2 2 2 2AB2+CD2=AE2+BE2+CE2+DE2,2 2 2 2 AD +BC =AB +CD ;(3)连接 CG、BE ,/ / CAG= / BAE=90 / CAG+ / BAC= / BAE+ / BAC,即 / GAB= / CAE ,在厶 GAB 和厶 CAE 中,IAB=AE GABCAE , / ABG= / AEC,又 / A
30、EC+ / AME=90 / ABG+ / AME=90 ,即 CE 丄 BG ,四边形 CGEB 是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,/ AC=4 , AB=5 , BC=3 , CG=4 . : , BE=5 . :,2 2 2 2 GE =CG +BE - CB =73 ,GE=F5 .EnG副3第29页(共25页)【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.24.(12 分)(2016?衢州)如图 1,在直角坐标系 xoy 中,直线 I: y=kx+b 交 x 轴,y
31、 轴于 点 E, F,点B 的坐标是(2, 2),过点 B 分别作 x 轴、y 轴的垂线,垂足为 A、C,点 D 是 线段 CO 上的动点,以 BD为对称轴,作与 BCD 或轴对称的 BCD .(1 )当/ CBD=15 时,求点 C 的坐标.(2) 当图 1 中的直线 I 经过点 A,且 k=-时(如图 2),求点 D 由 C 到 O 的运动过程中,3|线段 BC 扫过的图形与OAF 重叠部分的面积.(3) 当图 1 中的直线 I 经过点 D, C 时(如图 3),以 DE 为对称轴,作于DOE 或轴对称 的厶 DOE,连结 OC, OO,问是否存在点 D,使得 DOE与厶 COO相似?若存在,求出 k、b 的值;若不存在,请说明理由.圈1圏2圏3【分析】(1)利用翻折变换的性质得出/ CBD= / C BD=15 C B=CB=2,进而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度钢结构工程大数据分析与决策支持合同3篇
- 展会媒体合作合同(2篇)
- 2025年度环保项目财务代理与审计合同3篇
- 二零二五版智慧校园信息化建设与运营合同3篇
- 二零二五年新能源发电场电工劳务及环保设施合同3篇
- 二零二五年度高等学府外国专家讲学合同参考文本3篇
- 二零二五年度出租屋租赁合同范本:租赁押金无息退还协议3篇
- 二零二五年度机械加工行业信息安全保护合同2篇
- 2025年度标识标牌照明系统升级改造合同3篇
- 二零二五版机票预订代理及境外旅游套餐合同5篇
- 退款协议书范本(通用版)docx
- 电厂C级检修工艺流程
- 函授本科《小学教育》毕业论文范文
- 高考高中英语单词词根词缀大全
- 江苏省泰州市姜堰区2023年七年级下学期数学期末复习试卷【含答案】
- 药用辅料聚乙二醇400特性、用法用量
- 《中小学机器人教育研究(论文)11000字》
- GB/T 22085.1-2008电子束及激光焊接接头缺欠质量分级指南第1部分:钢
- 全过程人民民主学习心得体会
- 2023年上海期货交易所招聘笔试题库及答案解析
- 附图1岑溪市行政区划图
评论
0/150
提交评论