版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平行于三角形一边的直线和其他两边平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似相交,所构成的三角形与原三角形相似平行于三角形一边的直线与其它两边相交平行于三角形一边的直线与其它两边相交,所得的三所得的三角形与原三角形角形与原三角形_.相似相似“A”型型 ABCDE(图(图1) 类似于判定三角形全等的方法,我们类似于判定三角形全等的方法,我们还能不能通过三边来判断两个三角形相似还能不能通过三边来判断两个三角形相似呢?呢?ACCABCCBABBA 是否有是否有ABCABC?ABCCBA三边对应成三边对应成 比例比例已知已知:如图如图ABC和和 中中, 求证求证:ABCABC证明
2、证明: :在在ABCABC的边的边AB(AB(或延长线或延长线) )上截取上截取AD=AAD=AB B, , ABCABCDE过点过点D D作作DEBCDEBC交交ACAC于点于点E.E.又又 ADEADEABC , ABC , . .因此因此 . . ABCADE A B C A BA CB CABACBC ADAEDEABACBC,ADA BADA BABAB A BA CB CABACBC ,DEB CEAC ABCBCCACA ,DEB C EAC A A B C A B C 要证明要证明ABCABC,可以先作一,可以先作一个与个与ABC全等全等的三角形,证明的三角形,证明它它ABC与
3、相与相似这里所作的似这里所作的三角形是证明的三角形是证明的中介,它把中介,它把ABCABC联系起来联系起来ABCCBAACCABCCBABBAABCABC如果两个三角形的三组对应边的比相等如果两个三角形的三组对应边的比相等,那么那么这两个三角形相似这两个三角形相似.简单地说简单地说:三边对应的比相等三边对应的比相等,两三角形相似两三角形相似.类似于判定三角形全等的方法,我们能通类似于判定三角形全等的方法,我们能通过两边和夹角来判断两个三角形相似呢?过两边和夹角来判断两个三角形相似呢?AAkCAACBAAB实际上,我们有利用两边和夹角判定两个三实际上,我们有利用两边和夹角判定两个三角形相似的方法
4、角形相似的方法 如果两个三角形的两组对应边的比相等如果两个三角形的两组对应边的比相等, ,并且相应的夹角相等并且相应的夹角相等, ,那么这两个三角相似那么这两个三角相似. .思思考考?对于对于ABCABC和和ABC, ABC, 如果如果 , ,B=B,B=B,这两个三角形一定相似吗这两个三角形一定相似吗? ?试着画画看试着画画看. .例例1:根据下列条件,判断根据下列条件,判断ABC与与ABC是否是否相似,并说明理由相似,并说明理由(1)A=1200,AB=7cm,AC=14cm.A=1200,AB=3cm,AC=6cm.(2)AB=4 cm,BC=6cm,AC=8cm,AB=12cm,BC=
5、18cm,AC=21cm.218,31186,31124)2(CAACCBBCBAABCAACCBBCBAABABC与与ABC的三组对应边的三组对应边的比不等,它们不相似的比不等,它们不相似, .,37614,37) 1 ( :CBAABCAACAACBAABCAACBAAB又解要使两三角形相要使两三角形相似,不改变的似,不改变的AC长,长,AC的的长应改为多少?长应改为多少?1.1.根据下列条件根据下列条件, ,判断判断ABCABC与与ABCABC是否是否相似相似, ,并说明理由并说明理由: :(1)A=40(1)A=400 0,AB=8,AC=15, ,AB=8,AC=15, A=40A=
6、400 0,AB=16,AC=30;,AB=16,AC=30;(2)AB=10cm,BC=8cm,AC=16cm,(2)AB=10cm,BC=8cm,AC=16cm,AB=16cm,BC=12.8cm,AC=25.AB=16cm,BC=12.8cm,AC=25.6cm.6cm.2.2.图中的两个三角形是否相似图中的两个三角形是否相似? ?,如图已知AEACDEBCADAB试说明试说明BAD=CAE.BAD=CAE.ADCEBABBCACADDEAE证明ABCABCADEADEBAC=BAC=DAEDAEBACBACDAC=DAC=DAEDAEDACDAC即即BAD=CAEBAD=CAE答案是答案是2:1不相似,请说明理由。,求出相似比;如果它们相似吗?如果相似,和如图在正方形网格上有222111ACBACB 4:2=5:x=6:y 4:x=5:2=6:y 4:x=5:y=6:2要作两个形状相同的三角形框架要作两个形状相同的三角形框架,其中一个三角形其中一个三角形的三边的长分别为的三边的长分别为4、5、6,另一个三角形框架的另一个三角形框架的一边长为一边长为2,怎样选料可使这两个三角形相似怎样选料可使这两个三角形相似?4562 平行于三角形一边的直线与其他两边相平行于三角形一边的直线与其他两边相交交,所构成的三角形与原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色环保厂房改造合同协议3篇
- 专属担保义务拓展协议样本版B版
- 2025年度拆除工程安全评估与装修监理合同样本4篇
- 个人住宅装修协议样例一
- 二零二五年度车辆租赁行业信用体系建设合同3篇
- 2025年度假离婚后子女抚养权争夺法律合同3篇
- 专业油漆工程2024年度承包协议版B版
- 上海二手房买卖合同书范本(2024版)
- 2025年度拆迁拆除工程进度款支付协议书4篇
- 2025年度户外活动场地及设施租赁合同范本4篇
- 大数据管理与考核制度大全
- 大学面试后感谢信
- 2022届上海高考语文调研试测卷详解(有《畏斋记》“《江表传》曰…”译文)
- SBT11229-2021互联网旧货交易平台建设和管理规范
- 如何打造顶尖理财顾问团队
- 土壤农化分析课件
- 小区大型团购活动策划
- NEC(新生儿坏死性小肠结肠炎)92273
- 2023年租赁风控主管年度总结及下一年展望
- 开关插座必看的七个安全隐患范文
- 高分子成型加工课件
评论
0/150
提交评论