版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数值分析2015/12/6北京航空航天大学数值分析大作业姓名:郝海东学号:ZY1506227准备工作Ø 算法设计分析一:题目要求出(x,y,z)三者之间的关系,但首先给出的测量点是(u,t,z)。所以首先为得到点集(x,y,z),考虑在方程组A.3中带入每一对u,t,得到一个包含v,w,x,y四个变元的四元非线性方程组,此时采用非线性方程组的迭代法计算出(v,w,x,y),从而得到相应(u,t,z)对应的(x,y,z)。分析二:题目未给出f(x,y)的精确表达式,却要求以一定的精度拟合原方程。鉴于此处的考量,决定以二元插值法得到的表达式作为f(x,y)的精确表达式,以x,y的k次多项
2、式(k未知,需要在程序中从1次到n次循环计算从而得到最佳的k值)拟合函数作为p(x,y)。分析三: 非线性方程组的求解有普通迭代法和牛顿迭代法等。在考虑这两种方法时,首先考虑到普通迭代收敛速度为一阶收敛,且要求 |F(X)|F < 1才能收敛。而在本例中, 1 1 -1 0 1 1 0 -1F(X) =-sinv 1 -1 0 |F(X)|F < 1不成立,所以普通迭代法无法收敛。所以应 1 cosw 0 -1该采用牛顿迭代法计算(v,w,x,y)。综上可得,解决本问题的步骤为首先用牛顿迭代法求解非线性方程组得到(u,t,z)对应的(x,y,z)点集,然后用分片二元函数插值法得到方
3、程的精确表达式f(x,y),最后以xk,yk(k=1,2,)为基函数拟合得到p(x,y)。Ø 模块设计根据以上分析,设计以下模块:数据录入初始化模块void init()迭代计算(x,y,z)入口函数,迭代计算(v,w,x,y)的控制主体void iterCalXY()被调用函数,线性方程组求解得到v,wx,yvoid linearCal()二元函数插值二元函数二次插值表达式,返回f(x,y)double interpolation(double x, double y)返回朗格朗日系数给插值表达式double l(int k,double x,int flag)曲面拟合拟合函数表达
4、式,返回p(x,y)double surfaceFit(int k,double x, double y)矩阵相乘void trmul( double *a,double *b,int m,int n,int k,double *c)矩阵求逆int rinv(double *a,int n)计算k值int calK()结果输出void put(int k)Ø 数据结构设计本例中未涉及到复杂数据结构,(x,y,z)点集和非线性方程组F(X)采用二维矩阵存储。在曲面拟合时,各种矩阵的存储为一维数组,在进行行列的转换也较为方便。完整代码(编译环境windows10 + visual stu
5、dio2010):/ algo2.cpp : 定义控制台应用程序的入口点。#include "stdafx.h"#include <math.h>#include <malloc.h>double iter45;double point77;double deltav,deltaw,deltax,deltay;double *c;#define print printf("-n");void init()iter00 = 1;iter01 = 1;iter02 = -1;iter03 = 0;iter10 = 1;iter11 =
6、 1;iter12 = 0;iter13 = -1;iter20 = 0;iter21 = 1;iter22 = -1;iter23 = 0;iter30 = 1;iter31 = 0;iter32 = 0;iter33 = -1;iter04 = 1;iter14 = 1;iter24 = 1;iter34 = 1;point00 = 0.0;point01 = 0;point02 = 0.4;point03 = 0.8;point04 = 1.2;point05 = 1.6;point06 = 2;point10 = 0.0;point11 = -0.5;point12 = -0.34;p
7、oint13 = 0.14;point14 = 0.94;point15 = 2.06;point16 = 3.5;point20 = 0.2;point21 = -0.42;point22 = -0.5;point23 = -0.26;point24 = 0.3;point25 = 1.18;point26 = 2.38;point30 = 0.4;point31 = -0.18;point32 = -0.5;point33 = -0.5;point34 = -0.18;point35 = 0.46;point36 = 1.42;point40 = 0.5;point41 = 0.22;po
8、int42 = -0.34;point43 = -0.58;point44 = -0.5;point45 = -0.1;point46 = 0.62;point50 = 0.8;point51 = 0.78;point52 = -0.02;point53 = -0.5;point54 = -0.66;point55 = -0.5;point56 = -0.02;point60 = 1.0;point61 = 1.5;point62 = 0.46;point63 = -0.26;point64 = -0.66;point65 = -0.74;point66 = -0.5;void linearC
9、al()double max;int k;double temp;for(int j = 0 ; j < 3 ; j+)max = 0;for(int i = j ; i < 4 ; i+)if(fabs(iterij) > max)max = fabs(iterij);k = i;for(int m = j ; m < 5 ; m+)temp = iterjm;iterjm = iterkm;iterkm = temp;for(int m = j+1; m < 4 ; m+)double kk = itermj / iterjj;for(int n = j ;
10、n < 5 ; n+)itermn = itermn - kk * iterjn;deltay = iter34 / iter33;deltax = (iter24 - deltay * iter23) / iter22;deltaw = (iter14 - deltay * iter13 - deltax * iter12) / iter11;deltav = (iter04 - deltay * iter03 - deltax * iter02 - deltaw * iter01) / iter00;/*for(int i = 0 ; i < 4 ; i+)printf(&qu
11、ot;%.3f %.3f %.3f %.3f %.3fn",iteri0,iteri1,iteri2,iteri3,iteri4);printf("n%.3f %.3f %.3f %.3fn",deltav,deltaw,deltax,deltay);*/void iterCalXY()double v=1,w=1,x=1,y=1;printf("非线性方程组迭代计算v,w,x,y:nn");for(int n = 1 ; n <= 6 ; n+)int k = 0;double t = pointn0;double u = point0
12、n;doiter00 = 1;iter01 = 1;iter02 = -1;iter03 = 0;iter10 = 1;iter11 = 1;iter12 = 0;iter13 = -1;iter20 = 0;iter21 = 1;iter22 = -1;iter23 = 0;iter30 = 1;iter31 = 0;iter32 = 0;iter33 = -1;iter04 = -(0.5 * cos(t) + u + v + w - x - 2.67);iter14 = -(t + 0.5 * sin(u) + v + w - y - 1.07);iter24 = -(0.5 * t +
13、 u + cos(v) + w - x - 3.74);iter34 = -(t + 0.5 * u + v + sin(w) - y - 0.79);iter20 = -sin(v);iter31 = cos(w);linearCal();v += deltav;w += deltaw;x += deltax;y += deltay;k+;while(fabs(deltav / v) > pow(10.0,-12) | fabs(deltaw / w) > pow(10.0,-12) | fabs(deltax / x) > pow(10.0,-12) | fabs(del
14、tay / y) > pow(10.0,-12);printf(" v=%.12e w=%.12e x=%.12e y=%.12e 迭代次数k=%d n",v,w,x,y,k);pointn0 = y;point0n = x;print;double l(int k,double x,int flag)double numerator=1;double denominator=1;if(flag = 0)for(int i = 0 ; i < 3 ; i+)if(k != i)numerator = numerator * (x - point0i+3);den
15、ominator = denominator * (point0k+3 - point0i+3);elsefor(int i = 0 ; i < 3 ; i+)if(k != i)numerator = numerator * (x - pointi+30);denominator = denominator * (pointk+30 - pointi+30);return numerator / denominator;double interpolation(double x, double y)double ret = 0;for(int k = 0 ; k < 3 ; k+
16、)for(int r = 0 ; r < 3 ; r+)ret = ret + l(k,x,0) * l(r,y,1) * pointk+3r+3;return ret;void trmul( double *a,double *b,int m,int n,int k,double *c)int i,j,l,u;for (i=0; i<=m-1; i+)for (j=0; j<=k-1; j+) u=i*k+j; cu=0.0;for (l=0; l<=n-1; l+)cu=cu+ai*n+l*bl*k+j;int rinv(double *a,int n)int *i
17、s,*js,i,j,k,l,u,v; double d,p; is=(int *)malloc(n*sizeof(int); js=(int *)malloc(n*sizeof(int); for (k=0; k<=n-1; k+) d=0.0; for (i=k; i<=n-1; i+) for (j=k; j<=n-1; j+) l=i*n+j; p=fabs(al); if (p>d) d=p; isk=i; jsk=j; if (d+1.0=1.0) free(is); free(js); printf("err*not invn"); re
18、turn(0); if (isk!=k) for (j=0; j<=n-1; j+) u=k*n+j; v=isk*n+j; p=au; au=av; av=p; if (jsk!=k) for (i=0; i<=n-1; i+) u=i*n+k; v=i*n+jsk; p=au; au=av; av=p; l=k*n+k; al=1.0/al; for (j=0; j<=n-1; j+) if (j!=k) u=k*n+j; au=au*al; for (i=0; i<=n-1; i+) if (i!=k) for (j=0; j<=n-1; j+) if (j
19、!=k) u=i*n+j; au=au-ai*n+k*ak*n+j; for (i=0; i<=n-1; i+) if (i!=k) u=i*n+k; au=-au*al; for (k=n-1; k>=0; k-) if (jsk!=k) for (j=0; j<=n-1; j+) u=k*n+j; v=jsk*n+j; p=au; au=av; av=p; if (isk!=k) for (i=0; i<=n-1; i+) u=i*n+k; v=i*n+isk; p=au; au=av; av=p; free(is); free(js); return(1);dou
20、ble surfaceFit(int k,double x, double y)double *b= (double *)malloc(sizeof(double3) * (k+1);double *g= (double *)malloc(sizeof(double3) * (k+1);double *bt= (double *)malloc(sizeof(double3) * (k+1);double *gt= (double *)malloc(sizeof(double3) * (k+1);for(int j = 0 ; j <= k ; j+)for(int i = 0 ; i &
21、lt; 3 ; i+)bi*(k+1)+j = pow(point0i+3,j);gi*(k+1)+j = pow(pointi+30,j);btj*3+i = pow(point0i+3,j);gtj*3+i = pow(pointi+30,j);double *btb = (double *)malloc(sizeof(double) * (k+1) * (k+1);double *gtg = (double *)malloc(sizeof(double) * (k+1) * (k+1);trmul(bt,b,k+1,3,k+1,btb);trmul(gt,g,k+1,3,k+1,gtg)
22、;rinv(btb,k+1);rinv(gtg,k+1);double *u = (double *)malloc(sizeof(double) * 9);for(int i = 0 ; i < 3 ; i+)for(int j = 0 ; j < 3 ;j+)ui*3+j = pointi+3j+3;double *btbrbt = (double *)malloc(sizeof(double) * (k+1) * 3);trmul(btb,bt,k+1,k+1,3,btbrbt);double *btbrbtu = (double *)malloc(sizeof(double)
23、 * (k+1) * 3);trmul(btbrbt,u,k+1,3,3,btbrbtu);double *btbrbtug = (double *)malloc(sizeof(double) * (k+1) * (k+1);trmul(btbrbtu,g,k+1,3,(k+1),btbrbtug);c = (double *)malloc(sizeof(double) * (k+1) * (k+1);trmul(btbrbtug,gtg,k+1,k+1,k+1,c);double ret=0;for(int s = 0 ; s <= k ; s+ )for(int r = 0 ; r
24、<= k ;r+)ret = ret + cs*(k+1)+r * pow(x,s) * pow(y,r);return ret;int calK()int k = 1;double sigma = 0;putchar(10);print;printf("计算k值.n",k,sigma);dosigma = 0;for(int i = 0 ; i <= 10 ; i+)for(int j = 0 ; j <= 20 ; j+)sigma = sigma + pow(surfaceFit(k,0.08*i,0.5+0.05*j) - interpolatio
25、n(0.08*i,0.5+0.05*j),2);printf(" k=%d sigma=%.12en",k,sigma);k+;while(fabs(sigma) > pow(10.0,-7);k-;putchar(10);printf("当k=%d时,sigma=%.12e,满足要求。此时的c(r,s)如下所示:n",k,sigma);for(int r = 0 ; r <= k ; r+)for(int s = 0 ; s <= k ; s+)printf(" c(%d,%d)=%.12e ",r,s,cr*(k
26、+1)+s);putchar(10);print;putchar(10);putchar(10);return k;void put(int k)print;printf("当x(i)=0.08 * i,y(j)=0.5 + 0.05 * j 时,采用分片二次插值得到以下结果:nn");for(int i = 0 ; i <= 10 ; i+)for(int j = 0 ; j <= 20 ; j+)printf(" x(%d)=%f,y(%d)=%f,f(x,y)=%.12en",i,0.08*i,j,0.5+0.05*j,interpol
27、ation(0.08*i,0.5+0.05*j);print;putchar(10);print;printf("当x(i)=0.1 * i,y(j)=0.5 + 0.2 * j 时,采用分片二次插值和k次曲面拟合,分别得到以下结果:nn");for(int i = 0 ; i <= 8 ; i+)for(int j = 0 ; j <= 5 ; j+)printf(" x(%d)=%f,y(%d)=%f,f(x,y)=%.12e,p(x,y)=%.12en",i,0.1*i,j,0.5+0.2*j,interpolation(0.1*i,0
28、.5+0.2*j),surfaceFit(k,0.1*i,0.5+0.2*j);print;int _tmain(int argc, _TCHAR* argv)init();iterCalXY();int k = calK();put(k);return 0;结果输出非线性方程组迭代计算v,w,x,y: v=-1.402288635333e+000 w=1.218626459132e+000 x=-2.353662176202e+000 y=-1.253662176202e+000 迭代次数k=12 v=-6.866751502385e-001 w=1.226657014608e+000 x=
29、-1.239984846710e+000 y=-1.353089644759e-001 迭代次数k=9 v=-4.156943533737e-001 w=1.279071060422e+000 x=-5.460927959499e-001 y=5.520547524985e-001 迭代次数k=6 v=-3.049204401019e-001 w=1.399313225520e+000 x=6.318406636288e-002 y=9.904123284013e-001 迭代次数k=5 v=-1.852493640097e-002 w=1.580169272743e+000 x=8.3999
30、76910156e-001 y=1.791431137863e+000 迭代次数k=6 v=1.487987274582e-001 w=1.799347059348e+000 x=1.548296939740e+000 y=2.332794500219e+000 迭代次数k=5-计算k值. k=1 sigma=2.820715164735e+000 k=2 sigma=5.007125499241e-026当k=2时,sigma=5.007125499241e-026,满足要求。此时的c(r,s)如下所示: c(0,0)=-5.775556867930e-001 c(0,1)=-1.30627
31、7917977e-001 c(0,2)=2.366859028134e-001 c(1,0)=5.751212454893e-001 c(1,1)=-1.299373662970e+000 c(1,2)=3.035984844691e-001 c(2,0)=6.391262749418e-002 c(2,1)=2.186046543440e-001 c(2,2)=-5.107694856998e-002-当x(i)=0.08 * i,y(j)=0.5 + 0.05 * j 时,采用分片二次插值得到以下结果: x(0)=0.000000,y(0)=0.500000,f(x,y)=-5.83698
32、1069886e-001 x(0)=0.000000,y(1)=0.550000,f(x,y)=-5.778034866807e-001 x(0)=0.000000,y(2)=0.600000,f(x,y)=-5.707254368588e-001 x(0)=0.000000,y(3)=0.650000,f(x,y)=-5.624639575229e-001 x(0)=0.000000,y(4)=0.700000,f(x,y)=-5.530190486729e-001 x(0)=0.000000,y(5)=0.750000,f(x,y)=-5.423907103088e-001 x(0)=0.
33、000000,y(6)=0.800000,f(x,y)=-5.305789424306e-001 x(0)=0.000000,y(7)=0.850000,f(x,y)=-5.175837450384e-001 x(0)=0.000000,y(8)=0.900000,f(x,y)=-5.034051181321e-001 x(0)=0.000000,y(9)=0.950000,f(x,y)=-4.880430617118e-001 x(0)=0.000000,y(10)=1.000000,f(x,y)=-4.714975757774e-001 x(0)=0.000000,y(11)=1.0500
34、00,f(x,y)=-4.537686603289e-001 x(0)=0.000000,y(12)=1.100000,f(x,y)=-4.348563153663e-001 x(0)=0.000000,y(13)=1.150000,f(x,y)=-4.147605408897e-001 x(0)=0.000000,y(14)=1.200000,f(x,y)=-3.934813368990e-001 x(0)=0.000000,y(15)=1.250000,f(x,y)=-3.710187033943e-001 x(0)=0.000000,y(16)=1.300000,f(x,y)=-3.47
35、3726403755e-001 x(0)=0.000000,y(17)=1.350000,f(x,y)=-3.225431478426e-001 x(0)=0.000000,y(18)=1.400000,f(x,y)=-2.965302257956e-001 x(0)=0.000000,y(19)=1.450000,f(x,y)=-2.693338742346e-001 x(0)=0.000000,y(20)=1.500000,f(x,y)=-2.409540931595e-001 x(1)=0.080000,y(0)=0.500000,f(x,y)=-5.825645315867e-001
36、x(1)=0.080000,y(1)=0.550000,f(x,y)=-5.805395006613e-001 x(1)=0.080000,y(2)=0.600000,f(x,y)=-5.772112352904e-001 x(1)=0.080000,y(3)=0.650000,f(x,y)=-5.725797354741e-001 x(1)=0.080000,y(4)=0.700000,f(x,y)=-5.666450012122e-001 x(1)=0.080000,y(5)=0.750000,f(x,y)=-5.594070325048e-001 x(1)=0.080000,y(6)=0
37、.800000,f(x,y)=-5.508658293519e-001 x(1)=0.080000,y(7)=0.850000,f(x,y)=-5.410213917535e-001 x(1)=0.080000,y(8)=0.900000,f(x,y)=-5.298737197097e-001 x(1)=0.080000,y(9)=0.950000,f(x,y)=-5.174228132203e-001 x(1)=0.080000,y(10)=1.000000,f(x,y)=-5.036686722854e-001 x(1)=0.080000,y(11)=1.050000,f(x,y)=-4.
38、886112969050e-001 x(1)=0.080000,y(12)=1.100000,f(x,y)=-4.722506870792e-001 x(1)=0.080000,y(13)=1.150000,f(x,y)=-4.545868428078e-001 x(1)=0.080000,y(14)=1.200000,f(x,y)=-4.356197640909e-001 x(1)=0.080000,y(15)=1.250000,f(x,y)=-4.153494509285e-001 x(1)=0.080000,y(16)=1.300000,f(x,y)=-3.937759033206e-0
39、01 x(1)=0.080000,y(17)=1.350000,f(x,y)=-3.708991212673e-001 x(1)=0.080000,y(18)=1.400000,f(x,y)=-3.467191047684e-001 x(1)=0.080000,y(19)=1.450000,f(x,y)=-3.212358538240e-001 x(1)=0.080000,y(20)=1.500000,f(x,y)=-2.944493684341e-001 x(2)=0.160000,y(0)=0.500000,f(x,y)=-5.793772510005e-001 x(2)=0.160000
40、,y(1)=0.550000,f(x,y)=-5.811162261882e-001 x(2)=0.160000,y(2)=0.600000,f(x,y)=-5.814354309237e-001 x(2)=0.160000,y(3)=0.650000,f(x,y)=-5.803348652070e-001 x(2)=0.160000,y(4)=0.700000,f(x,y)=-5.778145290381e-001 x(2)=0.160000,y(5)=0.750000,f(x,y)=-5.738744224169e-001 x(2)=0.160000,y(6)=0.800000,f(x,y
41、)=-5.685145453435e-001 x(2)=0.160000,y(7)=0.850000,f(x,y)=-5.617348978179e-001 x(2)=0.160000,y(8)=0.900000,f(x,y)=-5.535354798400e-001 x(2)=0.160000,y(9)=0.950000,f(x,y)=-5.439162914099e-001 x(2)=0.160000,y(10)=1.000000,f(x,y)=-5.328773325276e-001 x(2)=0.160000,y(11)=1.050000,f(x,y)=-5.204186031931e
42、-001 x(2)=0.160000,y(12)=1.100000,f(x,y)=-5.065401034063e-001 x(2)=0.160000,y(13)=1.150000,f(x,y)=-4.912418331674e-001 x(2)=0.160000,y(14)=1.200000,f(x,y)=-4.745237924762e-001 x(2)=0.160000,y(15)=1.250000,f(x,y)=-4.563859813327e-001 x(2)=0.160000,y(16)=1.300000,f(x,y)=-4.368283997371e-001 x(2)=0.160
43、000,y(17)=1.350000,f(x,y)=-4.158510476892e-001 x(2)=0.160000,y(18)=1.400000,f(x,y)=-3.934539251891e-001 x(2)=0.160000,y(19)=1.450000,f(x,y)=-3.696370322368e-001 x(2)=0.160000,y(20)=1.500000,f(x,y)=-3.444003688322e-001 x(3)=0.240000,y(0)=0.500000,f(x,y)=-5.741362652301e-001 x(3)=0.240000,y(1)=0.55000
44、0,f(x,y)=-5.795336632615e-001 x(3)=0.240000,y(2)=0.600000,f(x,y)=-5.833980237588e-001 x(3)=0.240000,y(3)=0.650000,f(x,y)=-5.857293467218e-001 x(3)=0.240000,y(4)=0.700000,f(x,y)=-5.865276321505e-001 x(3)=0.240000,y(5)=0.750000,f(x,y)=-5.857928800450e-001 x(3)=0.240000,y(6)=0.800000,f(x,y)=-5.83525090
45、4053e-001 x(3)=0.240000,y(7)=0.850000,f(x,y)=-5.797242632314e-001 x(3)=0.240000,y(8)=0.900000,f(x,y)=-5.743903985231e-001 x(3)=0.240000,y(9)=0.950000,f(x,y)=-5.675234962807e-001 x(3)=0.240000,y(10)=1.000000,f(x,y)=-5.591235565040e-001 x(3)=0.240000,y(11)=1.050000,f(x,y)=-5.491905791931e-001 x(3)=0.2
46、40000,y(12)=1.100000,f(x,y)=-5.377245643479e-001 x(3)=0.240000,y(13)=1.150000,f(x,y)=-5.247255119685e-001 x(3)=0.240000,y(14)=1.200000,f(x,y)=-5.101934220548e-001 x(3)=0.240000,y(15)=1.250000,f(x,y)=-4.941282946069e-001 x(3)=0.240000,y(16)=1.300000,f(x,y)=-4.765301296248e-001 x(3)=0.240000,y(17)=1.3
47、50000,f(x,y)=-4.573989271084e-001 x(3)=0.240000,y(18)=1.400000,f(x,y)=-4.367346870578e-001 x(3)=0.240000,y(19)=1.450000,f(x,y)=-4.145374094729e-001 x(3)=0.240000,y(20)=1.500000,f(x,y)=-3.908070943538e-001 x(4)=0.320000,y(0)=0.500000,f(x,y)=-5.668415742753e-001 x(4)=0.320000,y(1)=0.550000,f(x,y)=-5.7
48、57918118812e-001 x(4)=0.320000,y(2)=0.600000,f(x,y)=-5.830990137955e-001 x(4)=0.320000,y(3)=0.650000,f(x,y)=-5.887631800183e-001 x(4)=0.320000,y(4)=0.700000,f(x,y)=-5.927843105496e-001 x(4)=0.320000,y(5)=0.750000,f(x,y)=-5.951624053893e-001 x(4)=0.320000,y(6)=0.800000,f(x,y)=-5.958974645374e-001 x(4
49、)=0.320000,y(7)=0.850000,f(x,y)=-5.949894879940e-001 x(4)=0.320000,y(8)=0.900000,f(x,y)=-5.924384757591e-001 x(4)=0.320000,y(9)=0.950000,f(x,y)=-5.882444278326e-001 x(4)=0.320000,y(10)=1.000000,f(x,y)=-5.824073442145e-001 x(4)=0.320000,y(11)=1.050000,f(x,y)=-5.749272249049e-001 x(4)=0.320000,y(12)=1
50、.100000,f(x,y)=-5.658040699038e-001 x(4)=0.320000,y(13)=1.150000,f(x,y)=-5.550378792111e-001 x(4)=0.320000,y(14)=1.200000,f(x,y)=-5.426286528269e-001 x(4)=0.320000,y(15)=1.250000,f(x,y)=-5.285763907511e-001 x(4)=0.320000,y(16)=1.300000,f(x,y)=-5.128810929837e-001 x(4)=0.320000,y(17)=1.350000,f(x,y)=-4.955427595248e-001 x(4)=0.320000,y(18)=1.400000,f(x,y)=-4.765613903744e-001 x(4)=0.320000,y(19)=1.450000,f(x,y)=-4.559369855324e-001 x(4)=0.320000,y(20)=1.500000,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版天然大理石地砖采购与工程应用合同3篇
- 2025年度车场租赁及停车场租赁保证金管理合同4篇
- 2024版建筑劳务分包合同
- 2025年度冷链物流场地存放租赁合同4篇
- 二零二五年项目管理外包合同3篇
- 二零二四年度医疗器械采购履约保函标准合同3篇
- 2024玉器拍卖与购销合同范本3篇
- 二零二五年度汽车租赁与销售结合合同4篇
- 2025年度铝单板行业市场分析与预测服务合同4篇
- 2025版电子商务合同风险防范及纠纷解决策略合同4篇
- 2023-2024学年度人教版一年级语文上册寒假作业
- 软件运维考核指标
- 空气动力学仿真技术:格子玻尔兹曼方法(LBM)简介
- 对表达方式进行选择与运用
- GB/T 18488-2024电动汽车用驱动电机系统
- 投资固定分红协议
- 高二物理题库及答案
- 职业发展展示园林
- 2024版医疗安全不良事件培训讲稿
- 中学英语教学设计PPT完整全套教学课件
- 移动商务内容运营(吴洪贵)项目五 运营效果监测
评论
0/150
提交评论