代数据中心解决方案课件_第1页
代数据中心解决方案课件_第2页
代数据中心解决方案课件_第3页
代数据中心解决方案课件_第4页
代数据中心解决方案课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、principle solution architectoracle china构建基于云平台的下一代数据中心 提纲1、云数据中心概念的提出2、云计算与数据中心的关系3、云数据中心的应用场景4、云数据中心的数据管理传统的数据中心烟囱式架构烟囱式架构 异构的技术 多种操作系统平台 支撑高峰时的容量 被动的响应式管理庞大的应用体系庞大的应用体系 静态地部署 多种软件组合 点对点集成 独立的应用数据mainframedascustomapplicationbig serverdaserpapplicationsalesapplicationclusterdatabasedatawarehousena

2、s/sanorborbnas/sanfilesdatabasedatabasesmall server数据中心的利用率和效率不高很少的一部分客户开很少的一部分客户开始监控数据中心服务始监控数据中心服务器的利用率,然而,器的利用率,然而,非常少的客户会注意非常少的客户会注意数据中心的效率数据中心的效率server utilization remains very low. . .average daily utilization (percent)01020304050607080901000102030405090100 up to 30% servers are dead* sample s

3、ize 45 data centerssource: uptime institutepeak daily utilization (percent)下一代云数据中心概念的提出整合的整合的敏捷的敏捷的高性能高性能高可用性高可用性整合架构-动态负载管理烟囱式架构-低效的资源管理整合的要求提升服务器的利用水平5% - 10% (gartner)60% - 70% (oracle大学网格)敏捷的要求 敏捷地适应应用变化情况 根据负载随需扩展 高弹性,动态伸缩,self service,配置更多的实例 在初始投资成本和获得良好的效率之间作出平衡(减少capex 和opex) 实时地获取业务变化,并以此

4、作出响应applications a, b, c, d, enetworkloadif utilization too high,increase capacityshared instanceserver aserver bserver cserver dscale-out on-demand联邦式云数据中心austin, txcolorado springs, cosalt lake city, ut根据应用要求进行资源分配austin, txcolorado springs, cosalt lake city, ut高性能的要求全球最大数据仓库容量其大小每两年增长三倍1998 1 tb;

5、 2001 10 tb; 2003 30 tb; 2005 100 tb; 2007 300tb; 2009 900 tb; 2011 2.7 pb高性能的要求分布式处理能力集中处理层问题:昨天的客户发展量如何?分布式处理层汇总、合并结果select sum(sales) wheredate=24-sept 多个服务器并行处理查询请求构建并发smart scan请求各服务器返回结果storage数据复制完全激活故障切换到备点数据的备份和恢复低成本高性能数据保护 & 归档集群技术保证容错和 服务器水平扩展databasedatabasestorage高可用性的要求自动存储管理保证容错和存

6、储水平扩展保证业务不被中断 - 每个都是可以水平扩展的, 完全激活的, 以数据为中心的要求达到最高可用性和最低的成本在线升级硬件和软件 提纲1、云数据中心概念的提出2、云计算与数据中心的关系3、云数据中心的应用场景4、云数据中心的数据管理云计算模式能以按需方式,通过网络,方便的访问云系统的可配置计算资源共享池(比如:网络,服务器,存储,应用程序和服务) 。同时它以最少的管理开销及最少的与供应商的交互,迅速配置提供或释放资源。* source: nist云计算基本特征普遍网络访问共享的资源池多db快速弹性能力可度量的服务按需的自服务为什么采用“云” 烟囱式的系统建设,it成本居高不下(硬件/能耗

7、/管理) 按峰值规模建设,资源平均利用率低 缺乏弹性的系统设计,应对业务突发情况差 建设周期漫长,无法快速提供与部署 业务需求的快速增长,设备更替快,不利投资保护集中资源池的共享虚拟化、分时/区共享动态调配、弹性伸缩自动化、自服务低成本、标准化硬件云计算云数据中心技术标准化能力服务化提供快速化资源弹性化管理自动化管控集中化传统模式 提纲1、云数据中心概念的提出2、云计算与数据中心的关系3、云数据中心的应用场景4、云数据中心的数据管理众多分散的小数据库需要整合,尤其是oss域及mss域,分散的数据库带来很多问题:分散的管理与运维db的多版本数据分散带来的数据一致性问题系统扩展能力的限制,即,缺乏

8、弹性能力(突发性业务需求的支撑能力难以满足)数据安全问题,无统一标准和流程数据质量问题,无统一标准和流程数据全生命周期管理缺失维护人员分散利用率不高的问题分散数据库带来的license冗余问题(集中的数据库基于共享可以带来license成本的降低)分散带来的数据分析与数据挖掘的困难低信息密度的现状导致的存储空间的浪费问题(缺乏高性能压缩能力)整合符合绿色计算的发展趋势通过标准化及自动化管理的采用有效降低运维成本有效提升数据安全并降低数据分发的难度满足全企业内集中的、标准化的数据管理要求整合与共享可以带来数据服务能力的持续可用集中化、标准化是it演进大趋势的要求分散数据库的整合集中化的灾备中心大

9、集中saas应用的数据库支撑新一代idc/adc的数据库提供与运营电信企业采用云数据中心的潜在现实需求1目前的灾备中心多为基于现有应用进行一对一的匹配建设(silo),硬件投资巨大目前的灾备中心多为冷备中心(active-standby),日常灾备中心的资源只能空闲无法利用,资源的有效利用率很低需要建设双活的灾备中心(active-active),有效提升资源利用率需要基于资源共享(share pool)及动态调整能力,有效节约硬件投资异构数据管理变为统一的同构数据管理,提升可管理性通过集中化的灾备中心建设,促进it系统的管控集中化、技术标准化的演进分散数据库的整合集中化的灾备中心大集中saa

10、s应用的数据库支撑新一代idc/adc的数据库提供与运营电信企业采用云数据中心的潜在现实需求3伴随电信市场竞争的加剧,电信企业的产品的同质化及全网一体化趋势越发明显,这使得电信企业的业务标准化程度越来越高;这些趋势直接导致了全网大集中的saas应用需求的产生saas应用基于统一的业务流程、数据模型、客户体验等为全网的所有使用者提供it应用能力,带来更高要求的数据库服务提供能力需求:满足大集中的高性能需求(数亿用户的oltp)满足大集中带来的pb级海量数据管理能力满足大集中带来的高可用性要求满足数据的生命周期管理能力满足业务增长带来的动态扩展性需求满足saas应用需要的数据一致性保障能力满足sa

11、as应用需要的关系型数据库的数据管理与数据提供能力要求全国大集中的saas应用对高性能、高可用性、数据严格一致性等方面的数据库需求,在bss领域核心支撑系统的全国大集中项目中显得尤为突出分散数据库的整合集中化的灾备中心大集中saas应用的数据库支撑新一代idc/adc的数据库提供与运营电信企业采用云数据中心的潜在现实需求3适合大型企业的大型关系型数据库的提供或托管高性能海量数据的可管理性数据生命周期管理扩展性服务使用的度量数据安全适合中小企业的小型关系型数据库的提供或托管db instance的快速自服务创建与释放计算能力及存储容量的弹性能力自动化管理能力服务使用的度量数据安全分散数据库的整合

12、集中化的灾备中心大集中saas应用的数据库支撑新一代idc/adc的数据库提供与运营电信企业采用云数据中心的潜在现实需求4众多分散的小数据库的整合,尤其是oss域及mss域基于整合平台提升数据生命周期管理能力及数据质量通过标准化及自动化管理的采用有效降低运维成本有效提升数据安全并降低数据分发的难度全企业内集中的、标准化的数据管理要求建设双活的灾备中心,有效提升资源利用率基于资源共享及动态调整能力,有效节约硬件投资通过集中化的灾备中心建设,促进it系统的管控集中化、技术标准化的演进全国大集中的saas应用带来高性能数据库集群的需求,尤其是bss领域核心支撑系统全国大集中的oltp需求海量数据管理

13、能力及动态扩展能力saas应用所需的数据一致性保障及关系数据管理能力适合大型企业的大型关系型数据库的提供或托管高性能、海量数据管理、扩展性适合中小企业的小型关系型数据库的提供或托管db实例的快速提供、弹性能力、自动化分散数据库的整合集中化的灾备中心大集中saas应用的数据库支撑新一代idc/adc的数据库提供与运营电信企业在云化架构的数据库平台层的潜在现实需求云数据中心的需求总结业务目标:降低成本、提高效率、改善服务、拓展业务! 提纲1、云数据中心概念的提出2、云计算与数据中心的关系3、云数据中心的应用场景4、云数据中心的数据管理云数据中心的技术要求数据仍然是云中心最重要的信息资产! 海量分布

14、式存储和处理 高并发读写 高性能获取 负载均衡 资源共享 在线扩展迁移 足够的安全 简单的管理 标准的访问接口云存储+分布式云数据库如何实现云数据中心两种云中的分布式数据库基于key/value的键值非关系型并行数据库云服务提供商:google bigtable,amazon simpledb,ms sds开源/独立:hadoop hbase, oldemort,cassandra关系型数据库/数据仓库分布式解决方案oltp&dw:oracle,db2,sql server,sybasedw:teradata,netezza,greenplum开源:hadoop cloudbase两种

15、云中的分布式数据库 cont.很小的应用领域,缺乏成熟的商业产品。产品成熟,但要在性能和伸缩性上进一步增强vs更适合企业私有云数据中心的建设云数据中心可能的问题云环境下需要一个更加强大的分布式数据库解决方案!oracle云数据中心解决方案exadata完美解决超大型分布式数据库/数据仓库面临的挑战! extreme performance 为数据仓库应用带来10-100倍的性能提升;oltp应用带来20倍的性能提升; linear scalability 适应海量数据迅速增长的线性性能扩展,消除瓶颈 availability 预配置的软硬件提供企业级的支撑能力,最大可用性、安全性、容灾等。 d

16、istributed 基于网格的智能分布式存储,解决海量数据的存储和处理,保证强大的i/o吞吐能力。更低的总体拥有成本!更高的性能!资源的分割与整合 instance caging instance caging允许管理员限制每个例程使用的cpu资源 可以防止运行在一个例程中的失控进程影响到运行在服务器上的其它例程 当数据库运行时可以动态调整. 参数cpu_count 支持分割方式和过度配置 与resource manager一起工作分布式智能处理 分布式处理,解决计算能力问题分布式处理,解决计算能力问题:每个服务器包括存储、cpu及相应的软件, 处理sql 及压缩,恒定的计算能力与存储的比值

17、。 横向并发计算,解决带宽和可靠性问题横向并发计算,解决带宽和可靠性问题:分布式处理单元横向部署,asm提供镜像保护,处理能力与数据量同比扩展。 廉价标准化,解决价格及更新问题廉价标准化,解决价格及更新问题:完全标准的pc服务器硬件,智能存储单元数量不受限,极大降低成本,并随着pc技术的发展而发展。exadata cellinfiniband switch/network集群数据库或单实例数据库exadata cellexadata cell分布式处理层集中处理层超高速、并发网络层exadata cellexadata cellexadata cellexadata cell云中存储的高可用性

18、通过自动存储技术(asm)避免磁盘或存储节点的单点故障 自动存储管理保证数据的冗余和条带化 保证数据的分布是均匀的 保证存储的动态添加和删除 保证热点数据获得更好的性能exadata cellexadata cellhothothothothothotcoldcoldcoldcoldcoldcoldasmdisk groupasmfailure groupasmfailure group案例介绍案例介绍 奥斯丁数据中心:超过 20,000 服务器全世界最大的 dell/linux 数据中心每星期增加100服务器超过 5,000 tb 数据全世界最大的 netapp 数据中心每月增加 60tbs 数据支持超过 400 其他客户的关键应用为超过65000甲骨文员工服务超过7000平方米oracle的应用架构整合1998todaybusiness as usualglobal single instance (gsi) 52 application instances 1 application instance of oracle e-business suite 40 data centers 3 d

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论