




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元一次方程 一、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。如果,那么;(c为一个数或一个式子)。等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。如
2、果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。即:(其中m0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:=1.6,将其化为: =1.6。方程的右边没有变化,这要与“去分母”区别开。2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一
3、边(记住移项要变号)等式基本性质1移项要变号,不移不变号;合并同类项把方程化成axb(a0)的形式合并同类项法则计算要仔细,不要出差错;系数化成1在方程两边都除以未知数的系数a,得到方程的解x等式基本性质2计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用: a0时,方程有唯一解; a=0,b=0时,方程有无数个解; a=0,b0时,方程无解。知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤: (1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数(
4、3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程(4)解方程(5)检验,看方程的解是否符合题意(6)写出答案2、解应用题的书写格式: 设根据题意解这个方程答。3、常见的一些等量关系常见列方程解应用题的几种类型:类型基本数量关系等量关系(1)和、差、倍、分问题较大量较小量多余量总量倍数×倍量抓住关键性词语(2)等积变形问题变形前后体积相等(3)行程问题相遇问题路程速度×时间甲走的路程乙走的路程两地距离追及问题同地不同时出发:前者走的路程追者走的路程同时不同地出发:前者走的路程两地距离追者所走的路程顺逆流问题顺流速度静水速度水流速度逆流速度静水速度水流速
5、度顺流的距离逆流的距离(4)劳力调配问题从调配后的数量关系中找相等关系,要抓住“相等”“几倍”“几分之几”“多”“少”等关键词语(5)工程问题工作总量工作效率×工作时间各部分工作量之和1(6)利润率问题商品利润商品售价商品进价商品利润率×100售价进价×(1利润率)抓住价格升降对利润率的影响来考虑(7)数字问题设一个两位数的十位上的数字、个位上的数字分别为a,b,则这个两位数可表示为10ab抓住数字所在的位置或新数、原数之间的关系(8)储蓄问题利息本金×利率×期数本息和本金利息本金本金×利率×期数×(1利息税率)(
6、9)按比例分配问题甲乙丙abc全部数量各种成分的数量之和(设一份为x)(10)日历中的问题日历中每一行上相邻两数,右边的数比左边的数大1;日历中每一列上相邻的两数,下边的数比上边的数大7日历中的数a的取值范围是1a31,且都是正整数 知识点四:方程与整式、等式的区别(1)从概念来看:整式:单项式和多项式统称整式。等式:用等号来表示相等关系的式子叫做等式。如,mnnm等都叫做等式,而像,m2n不含等号,所以它们不是等式,而是代数式。方程:含有未知数的等式叫做方程。如5x311,等都是方程。理解方程的概念必须明确两点:是等式;含有未知数。两者缺一不可。(2)从是否含有等号来看:方程首先是一个等式,
7、它是用“”将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不含有等号。(3)从是否含有未知量来看:等式必含有“”,但不一定含有未知量;方程既含有“”,又必须含有未知数。但整式必不含有等号,不一定含有未知量,分为单项式和多项式。四、规律方法指导1、判断一个式子是否是一元一次方程: (1)首先看是否是方程,(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;2、解一元一次方程常用的技巧有: (1)有多重括号,去括号与合并同类项可交替进行。(2)当括号内含有分数时,常由外向内先去括号,再去分母。(3)当分母中含有小数时,可用分数的基本性质化成整数。(4)运用整体思想,即把
8、含有未知数的代数式看做整体进行变形。四、经典例题透析类型一:一元一次方程的相关概念已知下列各式: 2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的个数是()A、5B、6C、7D、8思路点拨:方程是含有未知数的等式,根据定义逐个进行判断,显然不合题意。解:是方程的是,共六个,所以选B总结升华:根据定义逐个进行判断是解题的基本方法,判断时应注意两点:一是等式;二是含有未知数,体现了对概念的理解与应用能力。举一反三:变式1判断下列方程是否是一元一次方程:(1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)解析:判断是否为
9、一元一次方程需要对原方程进行化简后再作判断。答案:(1)(2)(3)不是,(4)是变式2已知:(a-3)(2a+5)x+(a-3)y+60是一元一次方程,求a的值。解析:分两种情况:(1)只含字母y,则有(a-3)(2a+5)0且a-30 (2)只含字母x,则有a-30且(a-3)(2a+5)0 不可能综上,a的值为。变式3(2011重庆江津)已知3是关于x的方程2xa=1的解,则a的值是( )A5 B5 C7 D2答案:B类型二:一元一次方程的解法解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1。如果我们在牢固掌握这一常规解题思路的基础上,根据方程原形和特点,灵活安排
10、解题步骤,并且巧妙地运用学过的知识,就可以收到化繁为简、事半功倍的效果。1巧凑整数解方程: 思路点拨:仔细观察发现,含未知数的项的系数和为,常数项的和故直接移项凑成整数比先去分母简单。解:移项,得。合并同类项,得2x1。系数化为1,得x。举一反三:变式解方程:2x5解:原方程可变形为2x5整理,得8x18(215x)2x5,去括号,得8x18215x2x5移项,得8x15x2x5182合并同类项,得9x21系数化为1,得x。2巧用观察法解方程: 思路点拨:该方程可化为3,不难看出,当y1时,该方程左边三项的值都是1,即左边右边,因原方程是一元一次方程,故只能有一个解,于是可求得方程的解是y1。
11、解:由观察可得y13巧去括号解方程: 思路点拨:含多层括号的一元一次方程,要根据方程中各系数的特点,选择适当的去括号的方法,因为题目中分数的分子和分母具有倍数关系,所以从外向内去括号可以使计算简单。解:去括号,得去小括号,得去分母,得(3x5)88去括号、移项、合并同类项,得3x21两边同除以3,得x7原方程的解为x7举一反三:变式解方程:解:依次移项、去分母、去大括号,得依次移项、去分母、去中括号,得依次移项、去分母、去小括号,得,x484巧去分母解方程: 思路点拨:当方程的分母含有小数,而小数之间又没有特殊的倍数关系时,若直接去分母则会出现比较繁琐的运算。为了避免这样的运算。应把分母化成整
12、数。化整数时,利用分数的基本性质将分子、分母同时扩大相同的倍数即可。解:原方程化为去分母,得100x(1320x)7去括号、移项、合并同类项,得120x20两边同除以120,得x原方程的解为总结升华:应用分数性质时要和等式性质相区别。可以化为同分母的,先化为同分母,再去分母较简便。举一反三:变式(2011山东滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。解:6巧组合解方程: 思路点拨:按常规解法将方程两边同乘72化去分母,但运算较复杂,注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化
13、解题过程。解:移项通分,得化简,得去分母,得8x1449x99。移项、合并,得x45。7巧解含有绝对值的方程: |x2|30思路点拨:解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|m,则xm或xm;也可以根据绝对值的几何意义进行去括号,如解法二。解法一:移项,得|x2|3 当x20时,原方程可化为x23,解得x5 当x20时,原方程可化为(x2)3,解得x1。 所以方程|x2|30的解有两个:x5或x1。解法二:移项,得|x2|3。 因为绝对值等于3的数有两个:
14、3和3,所以x23或x23。 分别解这两个一元一次方程,得解为x5或x1。举一反三:【变式1】(2011福建泉州)已知方程,那么方程的解是_.变式3 8利用整体思想解方程: 思路点拨:因为含有的项均在“”中,所以我们可以将作为一个整体,先求出整体的值,进而再求的值。解:移项通分,得:化简,得:移项,系数化1得:总结升华:解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。类型三、一元一次方程的常见应用题1.优化方案问题
15、由于活动需要,78名师生需住宿一晚,他们住了一些普通双人间和普通三人间,结果每间客房正好住满,且在宾馆给他们打五折优惠的基础上一天一共付住宿费2130元。请你算一算,他们需要双人普通间和三人普通间各多少间? 类型普通(元/间)豪华(元/间)双人房140300三人房150400解:设安排普通双人房x间,则可住2x人,费用为140×50·x元,此时安排普通三人房间,可住(782x)人,费用为150×50×元。由题意,得140×50×x150×50×2130。解得x9,20。即安排三人房20间,双人房9间即可。举一反三:
16、【变式】某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用相同数量60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算?租几辆车?解:设租用45座客车x辆,则根据春游学生人数不变,列方程:45x+15=60x-60解得: x=5若租用45座客车,则需用5辆,需花费:250×5=1250元若租用60座客车,则需用4辆,需花费300*4=1200元因为:1250>1200,因此租用60座客车比较合算。答:租用60座客车更合算 ,租用4辆车。2.行程中的追及相遇问题甲、乙两
17、人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地.问甲、乙行驶的速度分别是多少? 思路点拨:设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲333+90乙33+9013相遇前甲行驶的路程+90=相遇前乙行驶的路程;相遇后乙行驶的路程=相遇前甲行驶的路程.解:设甲行驶的速度为千米/时,则相遇前甲行驶的路程为3千米,乙行驶的路程为(3+90)千米,乙行驶的速度为千米/时,由题意,得.解这个方程,得=15.检验:=15适合方程,且符合题
18、意.将=15代入,得=45.答:甲行驶的速度为15千米/时,乙行驶的速度为45千米/时.总结升华:理解相遇前后的等量关系,相遇问题是行程问题中很重要的一种,它的特点是相向而行。这类问题可以通过画线段图或列表帮助理解、分析。举一反三:变式 甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的。摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?思路点拨:本题是一个异地不同时出发的相遇问题,其基本关系是:速度×时间路程。虽然不同时出发,但在相遇时,汽车所行的路程摩托车所行的路程甲、乙两地的距离,这就是本题的等量关系。如果设汽车开出x小时后与摩托车相遇,则在相遇时,汽车和摩托车所行的路程可表示如图:其中摩托车先行的路程为千米;摩托车后来所行的路程为千米。解:设汽车开出x小时与摩托车相遇,则36x36×240,解得x3答:汽车开出3小时后遇到摩托车。3银行储蓄小张在银行存了一笔钱,月利率为2%,利息税为20%,5个月后,他一共取出了本息和为1080元,问它存入的本金是多少元?解:设小张存入的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服务区供电设备远程维护与监控技术标准制定考核试卷
- 干燥剂在发动机中的应用考核试卷
- 自然教育课程考核试卷
- 开荒保洁管理办法
- 旅景景点管理办法
- 无线资金管理办法
- 抚顺疫情管理办法
- 新疆林地管理办法
- 2024年四川省盐源县普通外科学(副高)考试题含答案
- 房票安置管理办法
- 叶酸发放知识培训课件
- 中小校长考试试题及答案
- 中国海运拼箱行业市场发展前瞻及投资战略研究报告2025-2028版
- 2024ODCC-02007数据中心电能路由器应用白皮书
- 医疗废物处理登记表
- 卷烟真伪鉴别知识
- 药理学绪论-课件
- JGJ106-2014 建筑基桩检测技术规范
- 2022年06月辽宁经济管理干部学院(辽宁经济职业技术学院)公开招聘高层次人才笔试题库含答案解析
- 电脑基础知识培训ppt课件-电脑基础知识培训课件
- 龙湖集团招标管理原则
评论
0/150
提交评论