三角形的内角和与外角的性质_第1页
三角形的内角和与外角的性质_第2页
三角形的内角和与外角的性质_第3页
三角形的内角和与外角的性质_第4页
三角形的内角和与外角的性质_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1、(2011昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则1的度数为()A、45°B、60° C、75°D、85°2、(2011义乌市)如图,已知ABCD,A=60°,C=25°,则E等于()A、60°B、25° C、35°D、45°3、(2011台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角关于这七个角的度数关系,下列何者正确()A、2=4+7B、3=1+6C、1+4+6=180

2、6;D、2+3+5=360°4、(2011台湾)若ABC中,2(A+C)=3B,则B的外角度数为何()A、36B、72C、108D、1445、(2011台湾)若钝角三角形ABC中,A=27°,则下列何者不可能是B的度数?()A、37B、57C、77D、976、(2011宁波)如图所示,ABCD,E=37°,C=20°,则EAB的度数为()A、57°B、60° C、63°D、123°7、直角三角形中两锐角平分线所交成的角的度数是()A、45°B、135°C、45°或135°D、

3、都不对8、(2009荆门)如图,RtABC中,ACB=90°,A=50°,将其折叠,使点A落在边CB上A处,折痕为CD,则ADB=()A、40°B、30° C、20°D、10°9、关于三角形的内角,下列判断不正确的是()A、至少有两个锐角B、最多有一个直角C、必有一个角大于60°D、至少有一个角不小于60°10、如图,BE、CF都是ABC的角平分线,且BDC=110°,则A=()A、50°B、40° C、70°D、35°11、如图,将等边三角形ABC剪去一个角后,则

4、1+2的大小为()A、120°B、180°C、200°D、240°12、在三角形的三个外角中,钝角的个数最多有()A、3个B、2个 C、1个D、0个13、如图在ABC中,ABC=50°,ACB=80°,BP平分ABC,CP平分ACB,则BPC的大小是()A、100°B、110°C、115°D、120°14、以下说法中,正确的个数有()(1)三角形的内角平分线、中线、高都是线段;(2)三角形的三条高一定都在三角形的内部;(3)三角形的一条中线将此三角形分成两个面积相等的小三角形;(4)三角形的3个

5、内角中,至少有2个角是锐角A、1B、2 C、3D、415、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形16、已知:ABC,现将A的度数增加1倍,B的度数增加2倍,刚好使C是直角,则A的度数可能是()A、75°B、60° C、30°D、45°17、如图,BE、CF是ABC的角平分线,且A=70°,那么BDC的度数是()A、70°B、115°C、125°D、145°18、如图,ABC=31°,又BAC的

6、平分线与FCB的平分线CE相交于E点,则AEC为()A、14.5°B、15.5° C、16.5°D、20°19、(2010武汉)如图,ABC内有一点D,且DA=DB=DC,若DAB=20°,DAC=30°,则BDC的大小是()A、100°B、80° C、70°D、50°20、(2010聊城)如图,lm,1=115°,2=95°,则3=()A、120°B、130°C、140°D、150°21、(2009湘西州)如图,l1l2,1=120&

7、#176;,2=100°,则3=()A、20°B、40° C、50°D、60°22、(2007临沂)如图,ABC中,A=50°,点D,E分别在AB,AC上,则1+2的大小为()A、130°B、230°C、180°D、310°23、(2005吉林)如图,在RtADB中,D=90°,C为AD上一点,则x可能是()A、10°B、20° C、30°D、40°24、(2003台湾)如图是A、B两片木板放在地面上的情形图中1、2分别为A、B两木板与地面的夹角

8、,3是两木板问的夹角若3=110°,则21=()A、55°B、70° C、90°D、l10°25、(2002烟台)如图所示,在ABC中,ABC和ACB的外角平分线交于点O,设BOC=a,则A等于()A、90°2B、90°C、180°2D、180°26、如图,把ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A、A=1+2B、2A=1+2C、3A=21+2D、3A=2(1+2)27、如图,ABD,ACD的角平分线交于点P,若A=50°,D=10°,则P的度数为()A、15

9、76;B、20° C、25°D、30°28、(2006黑龙江)如图,ABCD,A=120°,1=72°,则D的度数为_度29、如图所示,ABC中,BD,CD分别平分ABC和外角ACE,若D24°,则A_度30、如图,A+B+C+D+E的度数为_度答案与评分标准一、选择题(共27小题)1、(2011昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则1的度数为()A、45°B、60°C、75°D、85°考点:三角形内角和定

10、理。专题:计算题。分析:根据三角形三内角之和等于180°求解解答:解:如图2=60°,3=45°,1=180°23=75°故选C点评:考查三角形内角之和等于180°2、(2011义乌市)如图,已知ABCD,A=60°,C=25°,则E等于()A、60°B、25°C、35°D、45°考点:三角形内角和定理;平行线的性质。专题:几何图形问题。分析:由已知可以推出A的同旁内角的度数为120°,根据三角形内角和定理得E=35°解答:解:设AE和CD相交于O点ABC

11、D,A=60°AOD=120°COE=120°C=25°E=35°故选C点评:本题主要考查平行线的性质、三角新股内角和定理,关键看出A的同旁内角的对顶角是三角形的一个内角3、(2011台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角关于这七个角的度数关系,下列何者正确()A、2=4+7B、3=1+6C、1+4+6=180°D、2+3+5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质。分析:根据对顶角的性质得出1=AOB,再用三角形内角和定理得出得出AOB+4+6=180°,

12、即可得出答案解答:解:四条互相不平行的直线L1、L2、L3、L4所截出的七个角,1=AOB,AOB+4+6=180°,1+4+6=180°故选C点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键4、(2011台湾)若ABC中,2(A+C)=3B,则B的外角度数为何()A、36B、72C、108D、144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角。专题:计算题。分析:由A+B+C=180°,得到2(A+C)+2B=360°,求出B=72°,根据B的外角度数=180°B即可求出

13、答案解答:解:A+B+C=180°,2(A+B+C)=360°,2(A+C)=3B,B=72°,B的外角度数是180°B=108°,故选C点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出B的度数是解此题的关键5、(2011台湾)若钝角三角形ABC中,A=27°,则下列何者不可能是B的度数?()A、37B、57C、77D、97考点:三角形内角和定理。专题:推理填空题。分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,C90°,B9

14、0°,分类讨论解答解答:解:钝角三角形ABC中,A=27°,B+C=180°27°=153°,又ABC为钝角三角形,有两种可能情形如下:C90°,B153°90°=63°,选项A、B合理;B90°,选项D合理,B不可能为77°故选C点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想6、(2011宁波)如图所示,ABCD,E=37°,C=20°,则EAB的度数为()A、57°B、60°C、63°D、123°

15、考点:三角形内角和定理;对顶角、邻补角;平行线的性质。分析:根据三角形内角和为180°,以及对顶角相等,再根据两直线平行同旁内角互补即可得出EAB的度数解答:解:ABCD,A=C+E,E=37°,C=20°,A=57°,故选A点评:本题考查了三角形内角和为180°,对顶角相等,以及两直线平行同旁内角互补,难度适中7、直角三角形中两锐角平分线所交成的角的度数是()A、45°B、135°C、45°或135°D、都不对考点:三角形内角和定理;角平分线的定义。分析:利用三角形的内角和定理以及角平分线的定义计算解答

16、:解:如图:AE、BD是直角三角形中两锐角平分线,OAB+OBA=90°÷2=45°,两角平分线组成的角有两个:BOE与EOD这两个交互补,根据三角形外角和定理,BOE=OAB+OBA=45°,EOD=180°45°=135°,故选C点评:几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;三角形的外角通常情况下是转化为内角来解决8、(2009荆门)如图,RtABC中,ACB=90°,A=50°

17、;,将其折叠,使点A落在边CB上A处,折痕为CD,则ADB=()A、40°B、30°C、20°D、10°考点:三角形内角和定理;三角形的外角性质;翻折变换(折叠问题)。分析:由三角形的一个外角等于与它不相邻的两个内角的和,得ADB=CA'DB,又折叠前后图形的形状和大小不变,CA'D=A=50°,易求B=90°A=40°,从而求出ADB的度数解答:解:RtABC中,ACB=90°,A=50°,B=90°50°=40°,将其折叠,使点A落在边CB上A处,折痕为C

18、D,则CA'D=A,CA'D是A'BD的外角,ADB=CA'DB=50°40°=10°故选D点评:本题考查图形的折叠变化及三角形的外角性质关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化解答此题的关键是要明白图形折叠后与折叠前所对应的角相等9、关于三角形的内角,下列判断不正确的是()A、至少有两个锐角B、最多有一个直角C、必有一个角大于60°D、至少有一个角不小于60°考点:三角形内角和定理。分析:可以利用反证的方法来判定各个命题是否正确解答:解:根据三角

19、形的内角和定理,不正确的是:必有一个角大于60°因为当三角形是等边三角形时三个角都相等,都是60度故选C点评:本题主要考查三角形的内角和定理,三角形的内角和是180度10、如图,BE、CF都是ABC的角平分线,且BDC=110°,则A=()A、50°B、40°C、70°D、35°考点:三角形内角和定理;角平分线的定义。分析:根据数据线的内角和定理以及角平分线的定义,可以证明解答:解:BDC=90°+A,故A=2(110°90°)=40°故选B点评:注意此题中的A和BDC之间的关系:BDC=90&

20、#176;+A11、如图,将等边三角形ABC剪去一个角后,则1+2的大小为()A、120°B、180°C、200°D、240°考点:三角形内角和定理;多边形内角与外角。分析:根据等边三角形的性质求出B、C的度数,再根据四边形的内角和定理求出1+2的大小解答:解:因为ABC为等边三角形,所以B+C=60°+60°=120°,根据四边形内角和为360°,可知1+2=360°120°=240°故选D点评:此题通过剪切,将四边形的内角和等边三角形的知识结合起来,是一道好题12、在三角形的三个外

21、角中,钝角的个数最多有()A、3个B、2个C、1个D、0个考点:三角形内角和定理。分析:在锐角三角形的外角中,有三个钝角;在直角三角形外角中,有两个钝角;在钝角三角形外角中,有两个钝角综上可知,在三角形的三个外角中,钝角的个数最多有3个解答:解:根据三角形的内角和是180度可知:三角形的三个内角中最多可有3个锐角,所以对应的在三角形的三个外角中,钝角的个数最多有3个故选A点评:主要考查了三角形的内角和外角之间的关系(1)三角形的外角等于与它不相邻的两个内角和(2)三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180°这一隐含的条件13、如图,在ABC中,ABC=50&

22、#176;,ACB=80°,BP平分ABC,CP平分ACB,则BPC的大小是()A、100°B、110°C、115°D、120°考点:三角形内角和定理;角平分线的定义。分析:根据三角形内角和定理计算解答:解:ABC=50°,ACB=80°,BP平分ABC,CP平分ACB,PBC=25°,PCB=40°,BPC=115°故选C点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°14、以下说法中,正确的个数有()(1)三角形的内角平分线、中线、高都是线段;(2)三角形的三条高一

23、定都在三角形的内部;(3)三角形的一条中线将此三角形分成两个面积相等的小三角形;(4)三角形的3个内角中,至少有2个角是锐角A、1B、2C、3D、4考点:三角形内角和定理;三角形的角平分线、中线和高。分析:分别根据三角形的内角平分线、中线、高的定义及三角形内角和定理进行逐一判断即可解答:解:(1)正确,符合三角形的内角平分线、中线、高的定义;(2)错误,当三角形为直角三角形或钝角三角形时不成立;(3)正确,可根据三角形的中线把原三角形分成的小三角形中,一个小三角形与原三角形同底但高为原三角形的一半进行证明;(4)正确,根据三角形的内角和定理即可证明故选C点评:本题涉及面较广,涉及到三角形内角平

24、分线、中线、高的定义及性质、三角形内角和定理,涉及面较广但难度适中15、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形考点:三角形内角和定理;角平分线的定义。分析:如图,CD,BD分别是ACB,ABC的角的平分线,D=145°要判断ABC的形状,需算出ABC中内角的度数解答:解:如图,CD,BD分别是ACB,ABC的角的平分线,D=145°在BCD中,1+2+D=180°,1+2=180°145°=35°1=ACB,2=ABC,ACB+AB

25、C=2(1+2)=70°,A=180°(ACB+ABC)=110°,ABC的形状为钝角三角形故选C点评:本题先根据三角形内角和定理求出1+2=35°,再根据角的平分线的性质求出ACB+ABC的值,再次利用三角形内角和定理求出A的度数,从而判断三角形的形状为钝角三角形16、已知:ABC,现将A的度数增加1倍,B的度数增加2倍,刚好使C是直角,则A的度数可能是()A、75°B、60°C、30°D、45°考点:三角形内角和定理。分析:根据三角形内角和定理判断解答:解:A、当A为75°时,A的度数增加1倍,变为1

26、50°,C不可能是直角;B、当A为60°时,A的度数增加1倍,变为120°,C不可能是直角;C、当A为30°,B为10°时,A的度数增加1倍为60°,B的度数增加2倍为30°,C刚好是直角;D、当C为45°时,A的度数增加一倍,变为90°,C不可能是直角故选C点评:本题有一定的开放性,需要对各条件进行验证和猜想,各角之和符合三角形内角和定理17、如图,BE、CF是ABC的角平分线,且A=70°,那么BDC的度数是()A、70°B、115°C、125°D、145

27、76;考点:三角形内角和定理。专题:计算题。分析:根据三角形的内角和定理和A的度数求得另外两个内角的和,利用角平分线的性质得到这两个角和的一半,用三角形内角和减去这两个角的一半即可解答:解:A=70°,ABC+ACB=180°A=180°70°=110°,BE、CF是ABC的角平分线,EBC+FCB=(ABC+ACB)=55°,BDC=180°55°=125°故选C点评:本题考查了三角形的内角和定理,此定理对学生来说比较熟悉,但有时运用起来却不很熟练,难度较小18、如图,ABC=31°,又BAC

28、的平分线与FCB的平分线CE相交于E点,则AEC为()A、14.5°B、15.5°C、16.5°D、20°考点:三角形内角和定理。专题:计算题。分析:设BAC=2x°,根据三角形外角的性质得:BCE=(x+)°,然后根据AE平分BAC和外角的性质得E+x=x+,解得:E=15.5°解答:解:设BAC=2x°,则根据三角形外角的性质得:BCD=(2x+31)°,BAC的平分线与FCB的平分线CE相交于E点,EAC=x°,ECD=(E+x)°,ECD是AEC的外角,ECD=E+EAD,即:

29、E+x=x+,解得:E=15.5°故选B点评:本题综合考查了三角形的内角和定理及三角形的外角的性质,解题时设出了一个中介值,从而使运算方便19、(2010武汉)如图,ABC内有一点D,且DA=DB=DC,若DAB=20°,DAC=30°,则BDC的大小是()A、100°B、80°C、70°D、50°考点:三角形的外角性质;三角形内角和定理。分析:如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得BDC=DEC+ECD,DEC=ABE+BAE,所以BDC=ABE+BAE+ECD,又DA=DB=DC,根据

30、等腰三角形等边对等角的性质得出ABE=DAB=20°,ECD=DAC=30°,进而得出结果解答:解:延长BD交AC于EDA=DB=DC,ABE=DAB=20°,ECD=DAC=30°又BAE=BAD+DAC=50°,BDC=DEC+ECD,DEC=ABE+BAE,BDC=ABE+BAE+ECD=20°+50°+30°=100°故选A点评:本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系20、(2010聊城)如图,lm,1=115°,2=95°,则3=()A、

31、120°B、130°C、140°D、150°考点:三角形的外角性质;平行线的性质。专题:计算题。分析:先根据两直线平行,同旁内角互补,求出4,再求出2的邻补角5,然后利用三角形外角性质即可求出3解答:解:lm,1=115°,4=180°1=180°115°=65°,又5=180°2=180°95°=85°,3=4+5=65°+85°=150°故选D点评:本题利用平行线的性质和三角形外角的性质求解21、(2009湘西州)如图,l1l2,1

32、=120°,2=100°,则3=()A、20°B、40°C、50°D、60°考点:三角形的外角性质;平行线的性质。专题:计算题。分析:先延长1和2的公共边交l1于一点,利用两直线平行,同旁内角互补求出4的度数,再利用外角性质求解解答:解:如图,延长1和2的公共边交l1于一点,l1l2,1=120°,4=180°1=180°120°=60°,3=24=100°60°=40°故选B点评:本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解22、

33、(2007临沂)如图,ABC中,A=50°,点D,E分别在AB,AC上,则1+2的大小为()A、130°B、230°C、180°D、310°考点:三角形的外角性质;三角形内角和定理。分析:根据三角形内角和以及平角定义即可解答解答:解:ABC中,A=50°,AED+ADE=130°,1+2=360°(AED+ADE)=230°故选B点评:正确理解三角形的内角和定理是解决本题的关键23、(2005吉林)如图,在RtADB中,D=90°,C为AD上一点,则x可能是()A、10°B、20

34、76;C、30°D、40°考点:三角形的外角性质。分析:根据三角形的外角等于与它不相邻的两个内角和可知解答:解:ACB是BCD的一个外角,90°6x180°,15°x30°故选B点评:主要考查了三角形的内角和外角之间的关系平行线的性质(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180°这一隐含的条件24、(2003台湾)如图是A、B两片木板放在地面上的情形图中1、2分别为A、B两木板与地面的夹角,3是两木板问的夹角若3=110°,则21=()A、

35、55°B、70°C、90°D、l10°考点:三角形的外角性质。分析:根据三角形外角定理,有21=180°110°=70度解答:解:5=180°2,4=180°3=180°110°=70°,1+4+5=180°,即1+180°2+70°=180°,21=180°110°=70°故选B点评:本题考查三角形外角定理,三角形的一个外角等于与它不相邻的两个内角的和25、(2002烟台)如图所示,在ABC中,ABC和ACB的外角

36、平分线交于点O,设BOC=a,则A等于()A、90°2B、90°C、180°2D、180°考点:三角形的外角性质;角平分线的定义;三角形内角和定理。分析:本题考查三角形的内角和定理和内角与外角的关系,根据题目中所给条件,可做出选择解答:解:A=180°12,又ABC和ACB的外角平分线交于点O,1=180°23,2=180°24,又在BOC中,BOC=180°34,联立得A=180°2故选C点评:本题考查三角形的内角和定理和内角与外角的关系,仔细观察图中各角的关系26、如图,把ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则()A、A=1+2B、2A=1+2C、3A=21+2D、3A=2(1+2)考点:三角形的外角性质;三角形内角和定理。分析:根据折叠的性质FED=AED,FDE=ADE,根据三角形内角和定理和邻补角的定义即可表示出A、1、2之间的关系解答:解:根据题意得FED=AED,FDE=ADE,由三角形内角和定理可得,FED+EDF=180°F=180°A,AEF+ADF=2(180

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论