酶工程复习要点_第1页
酶工程复习要点_第2页
酶工程复习要点_第3页
酶工程复习要点_第4页
酶工程复习要点_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、名词解释:酶工程:酶的生产、改性与应用的技术过程称为酶工程。固定化酶:固定在载体上并在一定的空间范围内进行的催化反应的酶固定化活细胞:固定在载体上并在一定的空间范围内进行生命活动的细胞称为固定化细胞。固定化细胞能进行正常的生长、繁殖和新陈代谢固定化原生质体:固定在载体上,在一定的空间范围内进行新陈代谢的原生质体。膜分离技术:借助一定孔径的高分子薄膜,将不同大小、形状、性质的颗粒或分子进行分离的技术。酶促破碎法:通过细胞本身的酶系或外加酶制剂的催化作用,使细胞外层结构受到破坏,而达到细胞破碎的方法。结晶:是指物质以晶体的状态从蒸汽或溶液中析出的过程。 萃取分离:利用溶质在互不相溶的两相之间分配系

2、数的不同而使溶质得到纯化或浓缩的方法。酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。 大分子结合修饰:采用水溶性大分子与酶的侧链基团共价结合,使酶分子的空间构象发生改变,从而改变酶的催化特性的方法。肽链有限水解修饰:肽链的水解在限定的肽键上进行,称为肽链有限水解。利用肽链的有限水解,其分子质量减少,既可以在基本保持酶活力的同时使酶的抗原性降低或消失,又可以使酶的空间结构发生某些精细的改变,从而改变酶的特性和功能的方法,称为肽链有限水解修饰。 氨基酸置换修饰:将酶分子肽链上的某一个氨基酸置换成另一个氨基酸,从而改变酶的催化特性的修饰方法。

3、原生质体融合育种:就是把两个亲本的细胞分别去掉细胞壁,获得原生质体,将两亲本的原生质体在高渗条件下混合,由聚乙二醇(PEG)作为助融剂,使它们互相凝集,发生细胞质融合,接着两亲本基因组由接触到交换,从而实现遗传重组的方法进行育种基因工程育种:改变细胞调节基因,使菌种由诱导型变为组成型。增加结构基因的拷贝数,增加细胞专一性酶的生产.组成酶:细胞固有的酶类。 诱导酶:是细胞为适应外来底物或其结构类似物而临时合成的一类酶。分解代谢物阻遏:指细胞内同时有两种分解底物(碳源或氮源)存在时,利用快的那种分解底物会阻遏利用慢的底物的有关酶合成的现象反馈阻遏:酶催化反应的产物或代谢途径的末端产物使该酶的生物合

4、成受到阻遏的现象反馈抑制:是最终产物抑制作用,在合成过程中,有些微生物合成途径的终点产物对该途径酶的活性调节,所引起的抑制作用。发酵动力学:研究发酵过程中细胞生长速率、产物生成速率、基质消耗速率以及环境因素对这些速率的影响的学科。细胞定向进化 :是在细胞水平上进行定向进化的过程,以各种细胞为进化对象,目的是改良细胞的各种特征,主要包括微生物细胞的定向进化、动物细胞的定向进化、植物细胞的定向进化等。酶反应器 :用于酶进行催化反应的容器及其附属设备。固定化酶膜反应器:由膜状或板状固定化酶或固定化微生物组装的反应器 。1.何谓酶工程,试述其主要内容和任务。答:酶的生产、改性与应用的技术过程称为酶工程

5、。酶的生产:微生物发酵产酶、动植物培养产酶、酶的提取和分离纯化.酶的改性:酶分子修饰、酶固定化、酶非水相催化和酶的定向进化酶的应用:通过酶的催化作用获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。酶工程的内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子的修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。酶工程的任务:经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。3、影响酶催化作用的主要因素。一、底物浓度的影响 二、酶浓度的影响三、温度的影响四、pH的影响五、

6、抑制剂的影响 六、激活剂的影响4、酶活力单位和酶比活力的概念。在实验室规定的条件下,每分钟催化lumol底物变化所需要的酶量为一个酶活力国际单位(用“IU”表示,简写为U)。酶的比活力是指在特定的条件下,单位质量(mg)蛋白质或RNA所具有的酶活单位数。5、如何测定固定化酶的比活力?固定化酶常用的活力测定方法有哪些?在固定化酶中,一般采用每克(g)干固定化酶所具有的酶活力单位数表示。固定化酶常用的活力测定方法:振荡测定法、酶柱测定法、连续测定法1、提高酶的产量的措施。(一)遗传控制(一劳永逸)诱变育种 (1) 使诱导型变为组成型选育组成型突变株(2)使阻遏型变为去阻遏型基因工程育种改变细胞调节

7、基因,使菌种由诱导型变为组成型。增加结构基因的拷贝数,增加细胞专一性酶的生产。(二)条件控制(1)添加诱导物(2)降低阻遏物浓度(3)添加表面活性剂(4)添加产酶促进剂2、酶生物合成的模式及每种模式的特征。1同步合成型特征 :生物合成伴随着细胞的生长而开始;在细胞进入旺盛生长期时,酶大量合成;当细胞生长进入平衡期后,酶的合成随着停止。2延续合成型特征:酶的合成在细胞的生长阶段开始,在细胞生长进入平衡期后酶还可以延续合成一段时间的一种酶生物合成模式。3中期合成型特征:酶在细胞生长一段时间后才开始,而在细胞生长进入平衡期以后,酶的生物合成也随之停止。4滞后合成型特征:酶在细胞生长一段时间或者进入平

8、衡期以后才开始合成并大量积累。3、影响酶生物合成模式的主要因素 1)mRNA的稳定性 高:可在细胞停止生长后继续合成酶差:随着细胞停止生长而终止酶的合成 2)培养基中阻遏物的存在不受阻遏:随着细胞的生长而开始酶的合成。受阻遏:细胞生长一段时间或平衡期后,酶才开4、优良产酶微生物菌种应具备的条件。1.酶产量高2.容易培养和管理(生长速率高、营养要求低)3.产酶稳定性好4.利于酶的分离提纯5.安全可靠,无毒性(不是致病菌)1、酶固定化方法有哪几种?各自的特点及适用范围五种方法:热处理法、吸附法、包埋法、共价结合法、交联法热处理法:该法只适应于那些热稳定性较好的酶的固定化。物理吸附法 :物理吸附法的

9、优点是操作简单,条件温和,对细胞活性影响小,酶活力损失小等,但细胞易受环境影响而脱落,操作稳定性差,另外,吸附的细胞数量少。 包埋法:优点:不与酶蛋白氨基酸残基反应,很少改变酶的高级结构,酶活回收率高。缺点:只适合作用于小分子底物和产物的酶。共价结合法:结合牢固,不易脱落,可连续使用较长的时间载体活化操作复杂,对酶的活性有影响。交联法:交联法制备的固定化酶或固定化菌体结合牢固,可以长时间使用。但由于交联反应条件较激烈,酶分子的多个基因被交联,致使酶活力损失较大,而且制备成的固定化酶或固定化菌体的颗粒较小,给使用带来不便。交联法也用于含酶菌体或菌体碎片的固定化。2、酶固定化后性质会发生什么变化?

10、原因是什么?酶固定化后稳定性提高中,包括哪几方面的稳定性?(一)酶的活性 :通常低于天然酶(有例外)。 (二)酶的稳定性酶的耐热性、对变性剂、抑制剂、蛋白酶的抵抗力增加,固定化可以增强贮存稳定性和操作稳定性。可能的原因:固定化增加了酶活性构象的牢固程度,可防止酶分子伸展变形;抑制酶的自身降解。固定化部分阻挡了外界不利因素对酶的侵袭。(三)酶的最适温度 最适温度与酶稳定性有关。多数酶固定化后热稳定性上升,最适温度也上升(有例外)。(四)酶的最适pH 带负电荷载体 :最适pH 向碱性偏移。带正电荷载体 :最适pH 向酸性偏移(五)酶的动力学特征固定化酶的表观米氏常数Km随载体的带电性能变化。 固定

11、化载体与底物电荷相反,固定化酶的表观Km值降低。固定化载体与底物电荷相同,固定化酶的表观Km值显著增加。(六)酶的作用专一性 与自然酶基本相同。但大分子底物难于接近酶分子,导致酶的专一性发生改变。3、细胞固定化的方法有哪些?细胞种类多种多样,大小和特征各不相同,故此细胞固定化的方法也有多种。归纳起来,主要可分为吸附法和包埋法两大类方法。吸附法简介:物理吸附法主要是利用细胞与载体之间的静电引力和专一的亲和力作用,使细胞固定在不同的载体(如硅藻土、陶瓷、玻璃和塑料)上。 包埋法:包埋法可分为凝胶包埋法和半透膜包埋法。凝胶包埋法是应用最广泛的细胞固定化方法,各种微生物、动植物细胞都可用此方法固定化。

12、一般采用的载体为琼脂、海藻酸钙、角叉菜胶、明胶、聚丙烯酰胺等。其中聚丙烯酰胺应用最早。 特点:包埋法固定细胞具有很多优点,如:方法简便、条件温和,对细胞活性影响小,稳定性好、机械强度较好和包埋容量较高等。但此法也有缺点,只适用于小分子底物 4、简述固定化原生质体的制备方法与特点原生质体制备好后,把离心收集到的原生质体重新悬浮在含有渗透压稳定剂的缓冲液中,配成一定浓度的原生质体悬浮液。然后采用包埋法制成固定化原生质体。特点: 解除了细胞壁扩散障碍,可增加细胞膜的通透性,有利于氧气和营养物质的传递和吸收,也有利于胞内物质的分泌,可显著提高产率。 由于有载体的保护作用,具有较好的操作稳定性和保存稳定

13、性,可反复使用或连续使用较长时间,利于连续化生产。 易于和发酵产物分开,有利于产物的分离纯化,提高产品质量。 发酵的培养基中需要添加稳定剂,以保持原生质体的稳定性。这些渗透压稳定剂在发酵结束后,可采用层析或膜分离技术等方法与产物分离。固定化原生质由于没有细胞壁,细胞结构不完整,失去增殖能力,但由于细胞膜的结构没有受其影响,保持了细胞原有的新陈代谢特性1、细胞破碎的目的、方法。大多数酶都存在于细胞内部,为了获得细胞内的酶,首先要收集细胞并进行细胞破碎,使细胞的外层结构破坏,然后进行酶的提取与分离纯化。1.机械法2.物理法3.化学法 4.酶促破碎法(酶解)2 选择细胞破碎方法的依据。(1)细胞的处

14、理量:大规模用机械法,小规模用非机械法。(2)细胞壁的强度与结构(3)目标产物对破碎条件的影响。机械法考虑剪切力,酶法考虑对目标产物是否具有降解作用。(4)破碎程度:高压匀浆法,细胞碎片细小,固液分离困难。(5)提取分离的难易3.  酶抽提的目标及方法。提取目标: a. 将目的酶最大限度地溶解出来。b. 保持生物活性。提取原则:a. 相似相溶。b. 远离等电点的pH值,溶解度增加。4三种离心方法(差速离心、密度梯度离心和等密度梯度离心)的特点。(1)差速离心特点:用于分离大小和密度差异较大的颗粒。(2)密度梯度离心特点:1.区带内的液相介质密度小于样品物质 2.颗粒的密度。适宜分离密

15、度相近而大小不同的固相物质。(3) 等密度梯度离心特点:1.介质的密度梯度范围包括所有待分离物质的密度。2.适于分离沉降系数相近,但密度不同的物质。5. 酶的分离纯化过程中常用沉淀法的种类及原理。种类:中性盐沉淀(盐析法)基本原理(盐溶和盐析) 向蛋白质或酶的水溶液中加入中性盐,可产生两种现象: 1) 盐溶(salting in) : 低浓度的中性盐增加蛋白质的溶解度。 2) 盐析(salting out) : 高浓度的中性盐降低蛋白质的溶解度。有机溶剂沉淀利用酶等蛋白质在有机溶剂中的溶解度不同而使之分离的方法。1. 沉淀机理:1.降低溶液的介电常数2.部分地引起蛋白质脱水2. 常用

16、有机溶剂丙酮>乙醇>甲醇,用量一般为酶液体积的2倍左右,终浓度为70%。 选择性沉淀(热变性和酸碱变性)选择一定的条件使溶液中存在的某些杂蛋白质变性沉淀而不影响所需蛋白质的方法。 热变性几乎所有的蛋白质都因加热变性而凝固,加热升高温度使杂蛋白变性沉淀而保留目的物在溶液中。 pH变性等电点沉淀法是pH变性法中的一种变体。 有机溶剂变性使那些对有机溶剂敏感的杂蛋白变性沉淀。等电点沉淀原理:蛋白质在等电点时溶解度最低不同的蛋白质具有不同的等电点 有机聚合物沉淀作用机理: 与有机溶剂类似 ,是发展较快的一种新方法。沉淀剂:常用聚乙二醇 (简写 PEG ) 多用分子量为600020000的

17、PEG。6.  双水相萃取、超临界流体萃取的概念。超临界萃取,又称为超临界流体萃取,是利用欲分离物质与杂质在超临界流体中的溶解度不同而达到分离的一种萃取技术。利用溶质在两个互不相溶的水相中的溶解度不同而达到分离。7.  膜分离的原理及应用。 膜分离过程中,薄膜的作用是选择性地让小于 其孔径的物质颗粒或分子通过,而把大于其孔径的颗粒截留。 应用(自己整理)超滤法在蛋白质溶液除盐、浓缩及分离纯化中有广泛的应用。 反渗透:海水淡化 电场膜分离:脱盐,海水淡化,纯水制备,从发酵液中分离柠檬酸、谷氨酸及凝胶电洗脱。8.  比较吸附层析、疏水层析、离子交换层析、凝胶过滤、亲和

18、层析 ,高效液相色谱的概念及原理上的不同点。 吸附层析是利用吸附剂对不同物质的吸附力不同而使混合物中各组分分离的层析方法。 离子交换层析是利用离子交换剂上的可解离基团(活性基团)对各种离子的亲和力不同而达到分离目的的一种层析分离方法。 凝胶层析又称为凝胶过滤、分子排阻层析、分子筛层析等,是指以各种凝胶为固定相,利用流动相中所含各种组分的相对分子质量不同而达到物质分离的一种层析技术。 亲和层析是利用生物分子与配基之间所具有的可逆的亲和力,使生物分子分离纯化的层析技术。 HPLC是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。9.  比

19、较连续与非连续、变性与非变性聚丙烯酰胺凝胶电泳区别。连续电泳:采用相同孔径的凝胶和相同的缓冲系统,只有分离胶;不连续电泳:采用不同孔径的凝胶和不同缓冲体系,有分离胶和浓缩胶。连续PAGE:电荷效应、分子筛效应不连续PAGE:电荷效应、分子筛效应、浓缩效应 1)电荷效应 : 分离胶中,蛋白质表面净电荷不同,迁移率不同。2)分子筛效应 :大小和形状不同的样品分子通过一定孔径的分离胶时,受阻滞的程度不同而表现出不同的迁移率。3)浓缩效应:使样品在浓缩胶中被浓缩成一条窄带,然后再进入分离胶进行分离。系统的不连续性表现在以下几个方面:1.凝胶由上、下两层凝胶组成,两层凝胶的孔径不同,上层为大孔径的浓缩胶

20、,下层为小孔径的分离胶。2.缓冲液离子组成及各层凝胶的pH不同。电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl缓冲液,而分离胶为pH8.9的Tris-HCl缓冲液。3.在电场中形成不连续的电位梯度。因此,在这样一个不连续的系统里,存在三种物理效应,即样品的浓缩效应,凝胶的分子筛效应和电荷效应,提高了分辨率。变性聚丙烯酰胺凝胶电泳:加了SDS非变性聚丙烯酰胺凝胶电泳:不加SDS10.  蛋白质浓度测定方法及酶活力测定方法。蛋白质浓度测定1.紫外吸收法:酪氨酸、色氨酸残基中苯环有共轭双键,在A280有最大吸收。特点:简便、快速、不损耗样品,但干扰因素

21、多。2. 双缩脲法:具有两个或两个以上肽键的化合物均有双缩脲反应。优点:快速;缺点:灵敏度差3. 酚试剂(Folin-酚)测定法:繁琐,但灵敏度、准确度高。4. 染料结合法(考马斯亮蓝染色法):又称Bradford法,灵敏、简便、快速、干扰少,是近年来常用的检测法。11.  比活力、提纯倍数、回收率的含义及用途。酶的比活力(纯度)=活力单位数/毫克蛋白比活力越高,酶纯度也越好。表示酶制剂纯度的一个指标。纯化倍数=提纯后比活力/提纯前比活力表示提纯过程中纯度提高的倍数。提纯倍数越大,表示该方法纯化效果越好。总活力酶活力单位数´ 酶液总体积即样品中全部酶活力。回收率提纯后酶总活

22、力/提纯前酶总活力×100表示提纯过程中酶损失程度的大小。回收率越高,损失越小。判断一个分离纯化方法的优劣,常用总活力的回收率和比活力的提纯倍数两个指标。回收率:反映酶的损失情况。提纯倍数:表示方法的有效程度。一个好的纯化步骤是回收率较高,提纯倍数也较大。12.  电泳的基本原理是什么?在一定pH条件下(用buffer),不同大小、形状及带电颗粒在电场中的移动速度不同(用迁移率表示),各自集中到特定的位置上而形成紧密的泳动带。 14.  影响凝胶过滤分辨率的因素有哪些?分配系数的含义及作用。凝胶对溶质的排阻程度可用分配系数Kd表示: Ve-Vo

23、 Kd= ViVo外水体积,层析柱内凝胶颗粒之间空隙的体积(ml)Vi内水体积,层析柱内凝胶颗粒内部各微孔体积的总和(ml)Ve某组分的洗脱体积,从加进层析柱到流出液中该组分出现高峰时的洗脱液体积(ml)分配系数Kd的意义:1) 可定量地衡量各组分的流出顺序。2) 判断分离效果,Kd差异大,分离效果好,Kd差异小,分离效果差。15 .酶的分离纯化中,纯化方法的排序.先选用粗放、快速、有利于缩小样品体积的方法。精确、费时、需样品少的方法,宜后选用。16. 酶结晶的主要方法有哪些?1、盐析结晶法 ;2、有机溶剂结晶法;3、等电点结晶法4、透析平衡结晶法5、温度差结晶法6、金属离子复合结晶法1、酶活

24、性中心的特点。(1)活性部位只占酶分子很小的一部分(1-2%)。(2)活性部位是一个三维实体。(3)活性中心位于酶分子表面的疏水性裂缝中。 (4)活性中心构象不是固定不变的(诱导契合)。(5)酶与底物通过盐键、氢键、范德华力和疏水作用等次级键结合。2、研究酶活性中心的方法。1.物理学方法:用X射线衍射法直接检测底物或其类似物与酶形成的中间复合物(包括酶和底物)的相对位置。2.化学修饰法:根据所用修饰试剂不同,分为1)非专一性化学修饰2)专一性化学修饰(基团专一性修饰)3)亲和标记(位点专一性修饰)3.蛋白质工程:将酶相应的cDNA定点突变,突变的cDNA只表达一个或几个氨基酸被置换的酶蛋白,测

25、定其活性可知被置换的氨基酸是否为活力所必需。4、酶分子的概念和作用酶分子是具有完整的化学结构和空间结构的生物大分子。作用:通过酶分子修饰,可以使酶分子结构发生某些合理的改变,就有可能提高酶的催化效率、增强酶的稳定性、降低或消除酶的抗原性、改变酶的底物专一性等。同时通过酶分子修饰,研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间的构象的影响,可以进一步探讨其结构与催化特性之间的关系。5、酶分子修饰的方法有哪些对酶分子的修饰方法分为化学法、生物法和物理法。化学法:金属离子置换法、大分子修饰法、肽链有限水解法、蛋白侧链基团的小分子修饰法等。生物法:通过基因工程的手段改变蛋白

26、质,即基于核酸水平对蛋白质进行改造,利用基因操作技术对DNA或mRNA进行改造和修饰以期获得化学结构更为合理的蛋白质。物理修饰法:不改变酶的组成和基团,酶分子的共价键不发生变化。 6、何谓金属离子置换修饰?简述其主要修饰过程和作用。把酶分子中的金属离子换成另一种金属离子,使酶的催化特性发生改变的修饰方法称为金属离子置换修饰。作用:1.阐明金属离子对酶催化作用的影响2.提高酶的催化效率3.增强酶的稳定性4.改变酶的动力学特征各种固定化方法的比较 与网格型包埋法相比,微囊型包埋法的优点:1)固定化酶颗粒小,有利于底物和产物扩散。2)半透膜能阻止蛋白质分子渗漏和进入,注入体内既可避免引起免疫过敏反应

27、,也可使酶免遭蛋白水解酶的降解,具有较大的医学价值。 缺点:反应条件要求高,制备成本也较高。影响共价结合的因素酶分子中可以形成共价键的基团载体的物化性质载体应为亲水性,应选用小颗粒或多孔载体;有一定的机械强度,具有在温和条件下与酶结合的功能团。载体的活化方法重氮法、叠氮法、溴化氰法、异氰酸法、异硫氰酸法、缩合法、酰氯法、活化脂法、酸酐法、烷化反应法、巯基二硫交换反应法,金属盐螯合法、硅烷化法固定化酶的性质 酶在水溶液中以自由的游离状态存在,但是固定后酶分子便从游离的状态变为牢固地结合于载体的状态,其结果往往引起酶的性质的改变。 酶活力固定化酶的活力在多数情况下比天然酶的活力低,其原因可能是:酶

28、活性中心的重要氨基酸残基与水不溶性载体相结合;当酶与载体结合时,它的高级结构发生了变化,其构象的改变导致了酶与底物结合能力或催化底物转化能力的改变;酶被固定化后,虽不失活,但酶与底物间的相互作用受到空间位阻的影响。 固定化酶的稳定性 游离酶的一个突出缺点是稳定性差,而固定化酶的稳定性一般都比游离酶提高得多,这对酶的应用是非常有利的。 (1)操作稳定性(2)贮藏稳定性(3)热稳定性(4)对蛋白酶的稳定性(5)酸碱稳定性 固定化酶的反应特性 (1)底物特异性 n 一般来说,当酶的底物为小分子化合物时,固定化酶的底物特异性大多数情况下不发生变化。 n 酶底物为大分子化合物时,底物分子量不同,对固定化

29、酶底物特异性的影响也不同,一般随着底物分子量的增大,固定化酶的活力下降。 (2)反应的最适pH n 酶被固定后,其最适pH和pH曲线常会发生偏移,原因可能有以下三个方面:n 一是酶本身电荷在固定化前后发生变化;n 二是由于载体电荷性质的影响致使固定化酶分子内外扩散层的氢离子浓度产生差异;n 三是由于酶催化反应产物导致固定化酶分子内部形成带电荷微环境(3)反应的最适温度 n 固定化酶的最适反应温度多数较游离酶高,如色氨酸酶经共价结合后最适温度比固定前提高515,但也有不变甚至降低的。 (4)米氏常数 米氏常数Km反映了酶与底物的亲和力。酶经固定化后,酶蛋白分子的高级结构的变化以及载体电荷的影响可

30、导致底物和酶的亲合力的变化(5)最大反应速度 固定化酶的最大反应速度与游离酶大多数是相同的。有些酶的最大反应速度会因固定化方法的不同而有所差异。 固定化细胞n 固定化细胞按其生理状态又可分为固定化死细胞和活细胞两大类。特点n 2.1优点n 无需进行酶的分离和纯化,减少酶的活力损失,同时大大降低了成本; n 可进行多酶反应,且不需添加辅助因子,;n 对于活细胞来说,保持了酶的原始状态,酶的稳定性更高,对污染的抵抗力更强; n 细胞生长停滞时间短,细胞多,反应快等等缺点n 必须保持菌体的完整,需防止菌体的自溶,否则影响产物的纯度;n 必须抑制细胞内蛋白酶对目的酶的分解;胞内多酶的存在,会形成副产物

31、;n 载体、细胞膜或细胞壁会造成底物渗透与扩散的障碍等制备方法 固定化活细胞的制备条件比固定化酶更要温和,其制备方法主要有物理吸附法和包埋法两种 物理吸附法 物理吸附法主要是利用细胞与载体之间的静电引力和专一的亲和力作用,使细胞固定在不同的载体(如硅藻土、陶瓷、玻璃和塑料)上。 特点:物理吸附法的优点是操作简单,条件温和,对细胞活性影响小,酶活力损失小等,但细胞易受环境影响而脱落,操作稳定性差,另外,吸附的细胞数量少包埋法 n 包埋法可分为凝胶包埋法和半透膜包埋法。n 凝胶包埋法是应用最广泛的细胞固定化方法,各种微生物、动植物细胞都可用此方法固定化。一般采用的载体为琼脂、海藻酸钙、角叉菜胶、明

32、胶、聚丙烯酰胺等。其中聚丙烯酰胺应用最早。 特点n 包埋法固定细胞具有很多优点,如:方法简便、条件温和,对细胞活性影响小,稳定性好、机械强度较好和包埋容量较高等。但此法也有缺点,只适用于小分子底物 固定化细胞及其在食品工业中的应用 n 固定化细胞应用于食品工业的主要优点在于它能保护细胞不受外界不利条件) 如酸、碱、有害离子等的影响,并且能起到连续生产的目的,目前固定化细胞主要用于乳制品工业中。 n 酵母固定化n 酸奶生产n 奶酪生产n 保护有益微生物延长细胞的存活率 固定化酶在工业生产上的应用 1. 氨基酰化酶(Aminoacylase) 世界上第一种工业化生产的固定化酶2.葡萄糖异构酶 世界

33、上生产规模最大,应用最为成功的一种固定化酶。固定化酶在医学上的应用 1. 消血栓n 纤溶酶是异源蛋白质,在人体内引起免疫反应,无法长期使用。n 酶的不稳定性使其在较短的时间内失活。 用包埋法制备的酶固定化技术可克服上述弊端,酶在囊中不能漏出,小分子物质能自由进出。2. 人工肾:原理:将病人血液中的尿素经脲酶水解成氨,再用活性炭吸附。即:用固定化脲酶和微胶囊活性炭组成人工肾固定化原生质体原生质体的制备n 1.1要求n 在破坏细胞壁的时候,不能影响到细胞膜的完整性,更不能使细胞内部的结构受到破坏。过程原生质体固定化n 凝胶包埋法n (1)常用胶n 琼脂凝胶、海藻酸钙凝胶、角叉菜胶、卡拉胶方法(角叉

34、菜胶固定法)用还有渗透压的缓冲液配成一定浓度(38)的角叉菜胶,加热溶解,灭菌后冷却50 左右,与等体积的原生质体悬浮液混合,将混悬液滴到一定浓度的预冷的KCl溶液中,即得球状固定化的原生质体特点n 解除了细胞壁扩散障碍,可增加细胞膜的通透性,有利于氧气和营养物质的传递和吸收,也有利于胞内物质的分泌,可显著提高产率。n 由于有载体的保护作用,具有较好的操作稳定性和保存稳定性,可反复使用或连续使用较长时间,利于连续化生产。n 易于和发酵产物分开,有利于产物的分离纯化,提高产品质量。n 发酵的培养基中需要添加稳定剂,以保持原生质体的稳定性。这些渗透压稳定剂在发酵结束后,可采用层析或膜分离技术等方法

35、与产物分离。1、细胞破碎的目的、方法。 大多数酶都存在于细胞内部,为了获得细胞内的酶,首先要收集细胞并进行细胞破碎,使细胞的外层结构破坏,然后进行酶的提取与分离纯化。 机械法 物理法 化学法 酶促破碎法(酶解)2 选择细胞破碎方法的依据。 (1)细胞的处理量:大规模用机械法,小规模用非机械法。 (2)细胞壁的强度与结构 (3)目标产物对破碎条件的影响。机械法考虑剪切力,酶法考虑对目标产物是否具有降解作用。 (4)破碎程度:高压匀浆法,细胞碎片细小,固液分离困难。 (5)提取分离的难易3.  酶抽提的目标及方法。提取目标: a. 将目的酶最大限度地溶解出来。 b. 保持生物活性。提取原

36、则 a. 相似相溶。 b. 远离等电点的pH值,溶解度增加。4三种离心方法(差速离心、密度梯度离心和等密度梯度离心)的特点。(1)差速离心特点:用于分离大小和密度差异较大的颗粒。(2)密度梯度离心特点: 区带内的液相介质密度小于样品物质 颗粒的密度。 适宜分离密度相近而大小不同的固相 物质。(3)等密度梯度离心特点: 介质的密度梯度范围包括所有待分离物质的密度。 适于分离沉降系数相近,但密度不同的物质。5. 酶的分离纯化过程中常用沉淀法的种类及原理。种类:中性盐沉淀(盐析法)基本原理(盐溶和盐析) 向蛋白质或酶的水溶液中加入中性盐,可产生两种现象: 1) 盐溶(salting in)

37、 : 低浓度的中性盐增加蛋白质的溶解度。 2) 盐析(salting out) : 高浓度的中性盐降低蛋白质的溶解度。有机溶剂沉淀利用酶等蛋白质在有机溶剂中的溶解度不同而使之分离的方法。1. 沉淀机理降低溶液的介电常数部分地引起蛋白质脱水2. 常用有机溶剂丙酮>乙醇>甲醇,用量一般为酶液体积的2倍左右,终浓度为70%。 选择性沉淀(热变性和酸碱变性)选择一定的条件使溶液中存在的某些杂蛋白质变性沉淀而不影响所需蛋白质的方法。 热变性几乎所有的蛋白质都因加热变性而凝固,加热升高温度使杂蛋白变性沉淀而保留目的物在溶液中。 pH变性等电点沉淀法是pH变性法中的一种变体。 有机溶剂变性使那些

38、对有机溶剂敏感的杂蛋白变性沉淀。等电点沉淀原理:蛋白质在等电点时溶解度最低不同的蛋白质具有不同的等电点 有机聚合物沉淀作用机理: 与有机溶剂类似 ,是发展较快的一种新方法。沉淀剂:常用聚乙二醇 (简写 PEG ) 多用分子量为600020000的 PEG。6.  双水相萃取、超临界流体萃取的概念。 超临界萃取,又称为超临界流体萃取,是利用欲分离物质与杂质在超临界流体中的溶解度不同而达到分离的一种萃取技术。 利用溶质在两个互不相溶的水相中的溶解度不同而达到分离。7.  膜分离的原理及应用。 膜分离过程中,薄膜的作用是选择性地让小于 其孔径的物质颗粒或分子通过,而把大于其孔径的

39、颗粒截留。 应用(自己整理)超滤法在蛋白质溶液除盐、浓缩及分离纯化中有广泛的应用。 反渗透:海水淡化 电场膜分离:脱盐,海水淡化,纯水制备,从发酵液中分离柠檬酸、谷氨酸及凝胶电洗脱。8.  比较吸附层析、疏水层析、离子交换层析、凝胶过滤、亲和层析 ,高效液相色谱的概念及原理上的不同点。 吸附层析是利用吸附剂对不同物质的吸附力不同而使混合物中各组分分离的层析方法。 离子交换层析是利用离子交换剂上的可解离基团(活性基团)对各种离子的亲和力不同而达到分离目的的一种层析分离方法。 凝胶层析又称为凝胶过滤、分子排阻层析、分子筛层析等,是指以各种凝胶为固定相,利用流动相中所含各种组分的相对分子质

40、量不同而达到物质分离的一种层析技术。 亲和层析是利用生物分子与配基之间所具有的可逆的亲和力,使生物分子分离纯化的层析技术。 HPLC是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数次的交换和分配而达到分离的过程。9.  比较连续与非连续、变性与非变性聚丙烯酰胺凝胶电泳区别。连续电泳(continuous electrophoresis)采用相同孔径的凝胶和相同的缓冲系统不连续电泳(discontinuous electrophoresis) 采用不同孔径的凝胶和不同缓冲体系连续PAGE:电荷效应、分子筛效应不连续PAGE:电荷效应、分子筛效应、浓缩效应 系统的不连

41、续性表现在以下几个方面:1.凝胶由上、下两层凝胶组成,两层凝胶的孔径不同,上层为大孔径的浓缩胶,下层为小孔径的分离胶。2.缓冲液离子组成及各层凝胶的pH不同。电极缓冲液为pH8.3的Tris-甘氨酸缓冲液,浓缩胶为pH6.7的Tris-HCl缓冲液,而分离胶为pH8.9的Tris-HCl缓冲液。3.在电场中形成不连续的电位梯度。因此,在这样一个不连续的系统里,存在三种物理效应,即样品的浓缩效应,凝胶的分子筛效应和电荷效应,提高了分辨率。变性聚丙烯酰胺凝胶电泳:加了SDS非变性聚丙烯酰胺凝胶电泳:不加SDS10.  蛋白质浓度测定方法及酶活力测定方法。蛋白质浓度测定1.紫外吸收法:酪氨

42、酸、色氨酸残基中苯环有共轭双键,在A280有最大吸收。特点:简便、快速、不损耗样品,但干扰因素多。2. 双缩脲法:具有两个或两个以上肽键的化合物均有双缩脲反应。优点:快速;缺点:灵敏度差3. 酚试剂(Folin-酚)测定法:繁琐,但灵敏度、准确度高。4. 染料结合法(考马斯亮蓝染色法):又称Bradford法,灵敏、简便、快速、干扰少,是近年来常用的检测法。11.  比活力、提纯倍数、回收率的含义及用途。酶的比活力(纯度)=活力单位数/毫克蛋白比活力越高,酶纯度也越好。表示酶制剂纯度的一个指标。纯化倍数=提纯后比活力/提纯前比活力表示提纯过程中纯度提高的倍数。提纯倍数越大,表示该方法

43、纯化效果越好。总活力酶活力单位数´ 酶液总体积即样品中全部酶活力。回收率提纯后酶总活力/提纯前酶总活力×100表示提纯过程中酶损失程度的大小。回收率越高,损失越小。判断一个分离纯化方法的优劣,常用总活力的回收率和比活力的提纯倍数两个指标。回收率:反映酶的损失情况。提纯倍数:表示方法的有效程度。一个好的纯化步骤是回收率较高,提纯倍数也较大。12.  电泳的基本原理是什么?在一定pH条件下(用buffer),不同大小、形状及带电颗粒在电场中的移动速度不同(用迁移率表示),各自集中到特定的位置上而形成紧密的泳动带。 13.  凝胶过滤层析有

44、哪四个方面的应用。 1)脱盐2)生物大分子物质的分离纯化3)分子量的测定4)溶液浓缩 14.  影响凝胶过滤分辨率的因素有哪些?分配系数的含义及作用。凝胶对溶质的排阻程度可用分配系数Kd表示: Ve-Vo Kd= ViVo外水体积,层析柱内凝胶颗粒之间空隙的体积(ml)Vi内水体积,层析柱内凝胶颗粒内部各微孔体积的总和(ml)Ve某组分的洗脱体积,从加进层析柱到流出液中该组分出现高峰时的洗脱液体积(ml)分配系数Kd的意义:1) 可定量地衡量各组分的流出顺序。2) 判断分离效果,Kd差异大,分离效果好,Kd差异小,分离效果差。15 .酶的分离纯化中,纯化方法的排序.先选用粗

45、放、快速、有利于缩小样品体积的方法。精确、费时、需样品少的方法,宜后选用。16. 酶结晶的主要方法有哪些? 1、盐析结晶法 ; 2、有机溶剂结晶法; 3、等电点结晶法 4、透析平衡结晶法 5、温度差结晶法 6、金属离子复合结晶法1、酶活性中心的特点。(1)活性部位只占酶分子很小的一部分(1-2%)。(2)活性部位是一个三维实体。(3)活性中心位于酶分子表面的疏水性裂缝中。 (4)活性中心构象不是固定不变的(诱导契合)。(5)酶与底物通过盐键、氢键、范德华力和疏水作用等次级键结合。2、研究酶活性中心的方法。1.物理学方法:用X射线衍射法直接检测底物或其类似物与酶形成的中间复合物(包括酶和底物)的

46、相对位置。2.化学修饰法:根据所用修饰试剂不同,分为1)非专一性化学修饰2)专一性化学修饰(基团专一性修饰)3)亲和标记(位点专一性修饰)3.蛋白质工程:将酶相应的cDNA定点突变,突变的cDNA只表达一个或几个氨基酸被置换的酶蛋白,测定其活性可知被置换的氨基酸是否为活力所必需。3、那些蛋白质侧链基团可以被修饰?20种不同氨基酸的侧链基团中只有极性氨基酸的侧链易被修饰,它们一般具有亲核性。侧链基团:组成蛋白质氨基酸残基上的功能团。主要有:氨基、羧基、胍基、巯基、酚基、咪唑基。4、酶分子的概念和作用酶分子是具有完整的化学结构和空间结构的生物大分子。作用:通过酶分子修饰,可以使酶分子结构发生某些合

47、理的改变,就有可能提高酶的催化效率、增强酶的稳定性、降低或消除酶的抗原性、改变酶的底物专一性等。同时通过酶分子修饰,研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间的构象的影响,可以进一步探讨其结构与催化特性之间的关系。5、酶分子修饰的方法有哪些对酶分子的修饰方法分为化学法、生物法和物理法。化学法:金属离子置换法、大分子修饰法、肽链有限水解法、蛋白侧链基团的小分子修饰法等。生物法:通过基因工程的手段改变蛋白质,即基于核酸水平对蛋白质进行改造,利用基因操作技术对DNA或mRNA进行改造和修饰以期获得化学结构更为合理的蛋白质。物理修饰法:不改变酶的组成和基团,酶分子的共价

48、键不发生变化。 6、何谓金属离子置换修饰?简述其主要修饰过程和作用。把酶分子中的金属离子换成另一种金属离子,使酶的催化特性发生改变的修饰方法称为金属离子置换修饰。作用:1.阐明金属离子对酶催化作用的影响2.提高酶的催化效率3.增强酶的稳定性4.改变酶的动力学特征8、酶分子化学修饰和酶的固定化在目的方法上的异同点。相同点:侧链基团修饰中的分子内交联修饰实际就是酶的固定化中的交联法固定化酶。不同点:其他:二、活性中心的共性(1)活性部位只占酶分子很小的一部分(1-2%)。(2)活性部位是一个三维实体。(3)活性中心位于酶分子表面的疏水性裂缝中。 (4)活性中心构象不是固定不变的(诱导契合)。(5)

49、酶与底物通过盐键、氢键、范德华力和疏水作用等次级键结合。限制酶大规模应用的原因:1)细胞外稳定性差;2)酶活性不够高;3)具有抗原性。改变酶特性有两种主要的方法1)通过分子修饰的方法来改变已分离出来的天然酶的活性。 2)通过基因工程方法改变编码酶分子的基因而达到改造酶的目的。3. 酶化学修饰的概念酶的化学修饰(chemical modification): 通过化学基团的引入或除去,使蛋白质共价结构发生改变。酶选择性化学修饰:在较温和的条件下,以可以控制的方式使一种蛋白质同某些化学试剂起特异反应,从而引起单个氨基酸残基或其功能基发生共价的化学变化。二、酶化学修饰的目的1)提高酶的生物活性(酶活

50、力)。2)增强酶的稳定性(热稳定性、体内半衰期)。3)消除抗原性(针对特异性反应降低生物识别能力)。4)产生新的催化能力。 酶化学修饰的原理一、如何增强酶天然构象的稳定性与耐热性修饰剂分子存在多个反应基团,可与酶形成多点交联。使酶的天然构象产生“刚性”结构。二、如何保护酶活性部位与抗抑制剂大分子修饰剂与酶结合后,产生的空间障碍或静电斥力阻挡抑制剂,“遮盖”了酶的活性部位。如何维持酶功能结构的完整性与抗蛋白水解酶酶化学修饰后通过两种途径抗蛋白水解酶:1. 大分子修饰剂产生空间障碍阻挡蛋白水解酶接近酶分子。“遮盖”酶分子上敏感键免遭破坏。2. 酶分子上许多敏感基团交联上修饰剂后,减少了受蛋白水解酶

51、破坏的可能性如何消除酶的抗原性及稳定酶的微环境1. 酶蛋白氨基酸组成的抗原决定簇,与修饰剂形成了共价键。 破坏了抗原决定簇抗原性降低乃至消除 “遮盖”了抗原决定簇阻碍抗原、抗体结合2. 大分子修饰剂本身是多聚电荷体,能在酶分子表面形成“缓冲外壳”,抵御外界环境的极性变化,维持酶活性部位微环境相对稳定。一、酶的表面化学修饰 (一)大分子修饰(大分子结合修饰) 1.定义:利用水溶性大分子与酶结合,使酶的空间结构发生某些精细的改变,从而改变酶的特性与功能的方法。2. 修饰剂: 聚乙二醇(PEG)、右旋糖酐(dextran)、肝素(heparin)、蔗糖聚合物(Ficoll)修饰方法:修饰前活化,,然

52、后在一定条件下与酶分子共价结合。(二)小分子修饰 (酶蛋白侧链基团修饰)定义:通过选择性的试剂或亲和标记试剂与酶分子侧链上特定的功能基团发生化学反应。侧链基团:组成蛋白质氨基酸残基上的功能团。主要有:氨基、羧基、胍基、巯基、酚基、咪唑基。侧链基团修饰剂:采用的各种小分子化合物。 20种不同氨基酸的侧链基团中只有极性氨基酸的侧链易被修饰,它们一般具有亲核性。特定氨基酸残基侧链基团的化学修饰1) 氨基的化学修饰:来源:Lys, Arg, His, Gln修饰反应:酰基化与烷基化酰基化修饰剂: 三硝基苯磺酸(TNBS)、丹磺酰氯(DNS)烷基化修饰剂:2,4二硝基氟苯(DNFB)、碘乙酸、碘乙酰胺、

53、亚硝酸等2) 羧基的化学修饰修饰羧基的反应专一性较差。常用水溶性碳化二亚胺修饰天冬氨酸和谷氨酸。可定量测定酶分子中羧基的数目3)胍基的化学修饰来源:Arg修饰反应:本质上是羰基对氨基酰基化4)巯基的化学修饰来源:Cys修饰反应:烷基化修饰剂:碘乙酸(IAA) . 碘乙酰胺(IAM) 5) 二硫键的化学修饰 还原:巯基乙醇、二硫苏糖醇(DTT) 6)咪唑基的化学修饰 来源:His 修饰反应:酰基化与烷基化 酰基化修饰剂: 常用焦碳酸二乙酯(diethyl paracarbonate) 7)酚羟基的化学修饰 来源:Tyr 修饰反应:芳香环取代反应 修饰剂:碘、硝化试剂(四硝基甲烷) 8)吲哚基的化

54、学修饰 来源:Trp 修饰反应:氧化反应 修饰剂: N-溴代琥珀酰亚胺但解释修饰效果须十分小心,因为:任何一种修饰剂不是绝对专一的。有些修饰剂引起蛋白质构象变化失活, 不一定是活性中心基团被共价修饰。不同部分的相同基团,修饰效果不同,分子内部的必需基团,不易被修饰。(三)交联修饰(交联法) 用双功能基团试剂(如戊二醛),与酶分子内不同肽链部分共价交联,使酶分子空间构象更加稳定。(四)固定化修饰(共价偶联法) 通过酶表面的酸性或碱性残基,将酶共价连接到惰性载体上,由于酶所处的微环境发生改变,使酶的最适pH、最适温度和稳定性发生改变。酶分子内部修饰(一)蛋白主链修饰(肽链有限水解修饰) 蛋白主链修饰采用酶法(用专一性较强的蛋白酶或肽酶为修饰剂)。酶蛋白的肽链被水解后,可能出现以下三种情况中的一种:1 引起酶活性中心的破坏,酶失去催化功能。2 仍维持活性中心的完整构象,保持酶活力。3 有利于活性中心与底物结合并形成准确的催化部位,酶活力提高。 后两种情况,肽链的水解在限定的肽键上进行,称肽链有限水解。应用实例:1)提高酶活力:2)消除抗原性:(二)氨基酸置换修饰 将肽链上的某一个氨基酸换成另一个氨基酸,引起酶蛋白空

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论