广州市普通高中毕业班综合测试二理科数学试卷及答案_第1页
广州市普通高中毕业班综合测试二理科数学试卷及答案_第2页
广州市普通高中毕业班综合测试二理科数学试卷及答案_第3页
广州市普通高中毕业班综合测试二理科数学试卷及答案_第4页
广州市普通高中毕业班综合测试二理科数学试卷及答案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、试卷类型:a2014年广州市普通高中毕业班综合测试(二)数学(理科) 2014.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2b铅笔将试卷类型(a)填涂在答题卡相应位置上.2选择题每小题选出答案后,用2b铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以

2、上要求作答的答案无效.4作答选做题时,请先用2b铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是,其中是锥体的底面积,是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分在每小题给出的四个选项中,只有一项是符合题目要求的 1. 若复数满足 i,其中i为虚数单位,则的虚部为 a b ci di 2若函数是函数的反函数,则的值为 a b c d 3命题“对任意r,都有”的否定是 a存在r,使得 b不存在r,使得 c存在r,使得 d对任意r,都有 4. 将函数r的图象向左平移

3、个单位长度后得到函数 ,则函数 a是奇函数 b是偶函数 c既是奇函数又是偶函数 d既不是奇函数,也不是偶函数 5有两张卡片,一张的正反面分别写着数字与,另一张的正反面分别写着数字与, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是 a b c d 6设分别是椭圆的左、右焦点,点在椭圆上,线段 的中点在轴上,若,则椭圆的离心率为 a b c d7一个几何体的三视图如图1,则该几何体 的体积为 a b c d第1列第2列第3列第4列第5列第1行第2行第3行第4行第5行8将正偶数按表的方式进行 排列,记表示第行第列的数,若,则的值为 a b c d 表1 二、填空题:本大题共7小题,考

4、生作答6小题,每小题5分,满分30分(一)必做题(913题)9不等式的解集为 .10已知的展开式的常数项是第项,则正整数的值为 .11已知四边形是边长为的正方形,若,则的值 为 .12设满足约束条件 若目标函数的最大值 为,则的最大值为 . 13已知表示不超过的最大整数,例如.设函数, 当n时,函数的值域为集合,则中的元素个数为 .(二)选做题(1415题,考生从中选做一题)14(坐标系与参数方程选做题)在平面直角坐标系中,直线为参数与 圆为参数相切,切点在第一象限,则实数的值为 .15(几何证明选讲选做题)在平行四边形中,点在线段上,且 ,连接,与相交于点,若的面积为 cm,则 的面积为 c

5、m.三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤16.(本小题满分12分) 如图2,在中,是边的中点,且,. (1) 求的值; (2)求的值. 图17(本小题满分12分) 一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样 本,称出它们的重量(单位:克),重量分组区间为, 由此得到样本的重量频率分布直方图,如图. (1)求的值; (2)根据样本数据,试估计盒子中小球重量的平均值; (注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.) (3)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望.18(本

6、小题满分14分) 如图,在五面体中,四边形是边长为的正方形,平面, ,.(1)求证:平面;(2)求直线与平面所成角的正切值. 图19(本小题满分14分)已知数列的前项和为,且,对任意n,都有. (1)求数列的通项公式; (2)若数列满足,求数列的前项和.20(本小题满分14分)已知定点和直线,过点且与直线相切的动圆圆心为点,记点的轨迹为曲线.(1) 求曲线的方程;(2) 若点的坐标为, 直线r,且与曲线相交于两点,直线分别交直线于点. 试判断以线段为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由.21(本小题满分14分) 已知函数r在点处的切线方程为. (1)求的值;

7、(2)当时,恒成立,求实数的取值范围; (3)证明:当n,且时,.2014年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数 2对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分 3解答右端所注分数,表示考生正确做到这一步应得的累

8、加分数4只给整数分数,选择题和填空题不给中间分一、选择题:本大题考查基本知识和基本运算共8小题,每小题5分,满分40分题号12345678答案abcbcdac 二、填空题:本大题考查基本知识和基本运算,体现选择性共7小题,每小题5分,满分30分其中1415题是选做题,考生只能选做一题9 10 11 12 13 14 15三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤16(本小题满分12分)(1)解:在中,. 4分(2)解:由(1)知,且, . 6分是边的中点, . 在中,8分 解得. 10分 由正弦定理得, 11分 . 12分17(本小题满分12分) (1) 解:

9、由题意,得, 1分 解得. 2分(2)解:个样本小球重量的平均值为(克). 3分由样本估计总体,可估计盒子中小球重量的平均值约为克. 4分(3)解:利用样本估计总体,该盒子中小球重量在内的概率为,则. 5分 的取值为, 6分 , ,. 10分 的分布列为: 11分. 12分 (或者)18(本小题满分14分)(1)证明:取的中点,连接,则, 平面,平面,平面平面, ,即. 1分 四边形是平行四边形. 2分 ,. 在rt中,又,得. . 3分 在中, ,. 4分,即.四边形是正方形,. 5分,平面,平面,平面. 6分(2)证法1:连接,与相交于点,则点是的中点, 取的中点,连接, 则,. 由(1)

10、知,且, ,且. 四边形是平行四边形. ,且 .7分 由(1)知平面,又平面, . 8分 ,平面,平面, 平面. 9分 平面. 平面, . 10分 ,平面,平面, 平面. 11分 是直线与平面所成的角. 12分 在rt中,. 13分 直线与平面所成角的正切值为. 14分证法2:连接,与相交于点,则点是的中点, 取的中点,连接, 则,. 由(1)知,且, ,且. 四边形是平行四边形. ,且. 7分 由(1)知平面,又平面, . ,平面,平面, 平面. 平面. 8分 以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴, 建立空间直角坐标系,则,. ,. 9分 设平面的法向量为,由, 得,得.

11、令,则平面的一个法向量为. 10分 设直线与平面所成角为, 则. 11分 ,. 13分 直线与平面所成角的正切值为. 14分19(本小题满分14分)(1)解法1:当时,1分 两式相减得, 3分 即,得. 5分 当时,即. 6分 数列是以为首项,公差为的等差数列. . 7分 解法2:由,得, 1分 整理得, 2分 两边同除以得,. 3分 数列是以为首项,公差为的等差数列. . . 4分 当时,. 5分 又适合上式, 6分 数列的通项公式为. 7分(2)解法1:, . 9分, 11分得. 13分 . 14分解法2:, . 9分.由, 11分两边对取导数得,. 12分令,得. 13分 . 14分20

12、(本小题满分14分)(1)解法1:由题意, 点到点的距离等于它到直线的距离, 故点的轨迹是以点为焦点, 为准线的抛物线. 1分 曲线的方程为. 2分解法2:设点的坐标为,依题意, 得, 即, 1分 化简得. 曲线的方程为. 2分 (2) 解法1: 设点的坐标分别为,依题意得,. 由消去得, 解得. . 3分 直线的斜率, 故直线的方程为. 4分 令,得, 点的坐标为. 5分 同理可得点的坐标为. 6分 . 7分. 8分设线段的中点坐标为, 则 . 9分 以线段为直径的圆的方程为. 10分 展开得. 11分 令,得,解得或. 12分 以线段为直径的圆恒过两个定点. 14分 解法2:由(1)得抛物

13、线的方程为. 设直线的方程为,点的坐标为, 由解得 点的坐标为. 3分由消去,得,即,解得或. 4分 ,.点的坐标为. 5分同理,设直线的方程为,则点的坐标为,点的坐标为. 6分点在直线上,. 7分又,得,化简得. 8分 设点是以线段为直径的圆上任意一点,则, 9分 得, 10分 整理得,. 11分 令,得,解得或. 12分 以线段为直径的圆恒过两个定点. 14分21(本小题满分14分)(1)解:, . 直线的斜率为,且过点, 1分 即解得. 3分(2)解法1:由(1)得.当时,恒成立,即,等价于. 4分令,则. 5分令,则.当时,函数在上单调递增,故. 6分从而,当时,即函数在上单调递增, 故. 7分因此,当时,恒成立,则. 8分所求的取值范围是. 9分解法2:由(1)得. 当时,恒成立,即恒成立. 4分 令,则. 方程()的判别式.()当,即时,则时,得, 故函数在上单调递减. 由于, 则当时,即,与题设矛盾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论