版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、常系数 机动 目录 上页 下页 返回 结束 第八节齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 求特征方程(代数方程)之根转化 第十二章 二阶常系数齐次线性微分方程:),(0为常数qpyqypy xrey 和它的导数只差常数因子,代入得0)(2xre qprr02qrpr称为微分方程的特征方程特征方程,1. 当042qp时, 有两个相异实根,21r ,r方程有两个线性无关的特解:,11xrey ,22xrey 因此方程的通解为xrxrececy2121( r 为待定常数 ),xrer函数为常数时因为,所以令的解为 则微分其根称为特征根特征根.机动 目录 上页 下页 返回 结束 2.
2、 当042qp时, 特征方程有两个相等实根21rr 则微分方程有一个特解)(12xuyy 设另一特解( u (x) 待定)代入方程得:1xre)(1urup0uq)2(211ururu 1r注意是特征方程的重根0 u取 u = x , 则得,12xrexy 因此原方程的通解为xrexccy1)(21,2p.11xrey )(1xuexr0)()2(1211 uqrprupru机动 目录 上页 下页 返回 结束 3. 当042qp时, 特征方程有一对共轭复根irir21,这时原方程有两个复数解:xiey)(1)sin(cosxixexxiey)(2)sin(cosxixex 利用解的叠加原理 ,
3、 得原方程的线性无关特解:)(21211yyy)(21212yyyixexcosxexsin因此原方程的通解为)sincos(21xcxceyx机动 目录 上页 下页 返回 结束 小结小结:),(0为常数qpyqypy ,02qrpr特征方程:xrxrececy212121,:rr特征根21rr 实根 221prrxrexccy1)(21ir,21)sincos(21xcxceyx特 征 根通 解以上结论可推广到高阶常系数线性微分方程 .机动 目录 上页 下页 返回 结束 若特征方程含 k 重复根,ir若特征方程含 k 重实根 r , 则其通解中必含对应项xrkkexcxcc)(121xxcx
4、ccekkxcos)( 121sin)(121xxdxddkk则其通解中必含对应项)(01) 1(1)(均为常数knnnnayayayay特征方程: 0111nnnnararar),(均为任意常数以上iidc推广推广:机动 目录 上页 下页 返回 结束 例例1.032 yyy求方程的通解.解解: 特征方程, 0322rr特征根:,3,121rr因此原方程的通解为xxececy321例例2. 求解初值问题0dd2dd22ststs,40ts20ddtts解解: 特征方程0122rr有重根,121 rr因此原方程的通解为tetccs)(21利用初始条件得, 41c于是所求初值问题的解为tets)2
5、4(22c机动 目录 上页 下页 返回 结束 例例3.xxo解解: 由第七节例1 (p293) 知, 位移满足质量为m的物体自由悬挂在一端固定的弹簧上,在无外力作用下做自由运动,初始求物体的运动规律 ,0v速度为. )(txx 立坐标系如图, ,0 xx 设 t = 0 时物体的位置为取其平衡位置为原点建 00ddvtxt,00 xxt22ddtx02xktxndd2因此定解问题为自由振动方程 , 机动 目录 上页 下页 返回 结束 方程:22ddtx02xk特征方程:, 022 krkir2,1特征根:tkctkcxsincos21利用初始条件得:,01xc 故所求特解:tkkvtkxxsi
6、ncos00a)sin(tka0 xkv0方程通解:1) 无阻尼自由振动情况无阻尼自由振动情况 ( n = 0 )kvc020022020tan,vxkkvxa机动 目录 上页 下页 返回 结束 解的特征解的特征:)sin(tkax0 xaaxto简谐振动 a: 振幅, : 初相,周期: kt2:mck 固有频率 t0dd00vtxt, 000 xxt下图中假设机动 目录 上页 下页 返回 结束 (仅由系统特性确定)方程:特征方程:0222krnr222,1knnr特征根:小阻尼: n k临界阻尼: n = k 22ddtx02xktxndd2)sincos(21tctcextn)(22nk
7、trtrececx2121tnetccx)(21解的特征解的特征解的特征解的特征解的特征解的特征机动 目录 上页 下页 返回 结束 ( n k ) 大阻尼解的特征大阻尼解的特征: 1) 无振荡现象; trtrececx2121222,1knnr其中22knn0.0)(limtxttxo0 x此图参数: 1, 5 . 1kn5 . 10 x073. 50v2) 对任何初始条件即随时间 t 的增大物体总趋于平衡位置.机动 目录 上页 下页 返回 结束 ( n = k ) 临界阻尼解的特征临界阻尼解的特征 : 任意常数由初始条件定, tnetccx)(21)() 1tx最多只与 t 轴交于一点; 取
8、何值都有无论21,cc)(lim)3txt即随时间 t 的增大物体总趋于平衡位置.0)(lim21tntetcc2) 无振荡现象 ;机动 目录 上页 下页 返回 结束 例例4.052)4( yyy求方程的通解. 解解: 特征方程, 052234rrr特征根:irrr21, 04,321因此原方程通解为xccy21)2sin2cos(43xcxcex例例5.0)4()5( yy解方程解解: 特征方程:, 045rr特征根 :1, 054321rrrrr原方程通解:1cyxc223xc34xcxec5(不难看出, 原方程有特解), 132xexxx推广 目录 上页 下页 返回 结束 02)(222
9、22rr例例6. . )0(0dd444wxw解方程解解: 特征方程:44r即0)2)(2(2222rrrr其根为),1(22,1ir)1(24,3ir方程通解 :xew2)2sin2cos(21xcxcxe2)2sin2cos(43xcxc机动 目录 上页 下页 返回 结束 例例7.02)4( yyy解方程解解: 特征方程:01224rr0)1(22r即特征根为,2,1irir4,3则方程通解 :xxccycos)(31xxccsin)(42机动 目录 上页 下页 返回 结束 内容小结内容小结),(0为常数qpyqypy 特征根:21, rr(1) 当时, 通解为xrxrececy212121rr (2) 当时, 通解为xrexccy1)(2121rr (3) 当时, 通解为)sincos(21xcxceyxir2, 1可推广到高阶常系数线性齐次方程求通解 .机动 目录 上页 下页 返回 结束 思考与练习思考与练习 求方程0 yay的通解 .答案答案:0a通解为xccy21:0a通解为xacxacysincos21:0a通解为xaxaececy21作业作业 p310 1 (3) , (6) , (10) ; 2 (2) , (3) , (6) ; 3第九节 目录 上页 下页 返回 结束 备用题备用题,2cos,2,321xyexyeyxx求一个以xy2sin34为特解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药剂科年终工作汇报与未来规划计划
- 信阳师范大学《MG动画》2022-2023学年第一学期期末试卷
- 西京学院《景观小品设计》2023-2024学年第一学期期末试卷
- 西华师范大学《英语演讲与辩论》2023-2024学年第一学期期末试卷
- 西华大学《装饰基础》2021-2022学年第一学期期末试卷
- 西昌学院《版式设计》2022-2023学年第一学期期末试卷
- 西北大学《心理危机干预专题》2023-2024学年第一学期期末试卷
- 西北大学《色彩构成》2021-2022学年第一学期期末试卷
- 西北大学《包装设计》2023-2024学年第一学期期末试卷
- 11.2+化学肥料-2023-2024学年九年级化学人教版下册
- 应用文写作之新闻报道
- 卷膜按卷径计算公式
- 设计分包合作合同协议书范本
- 针灸专业词汇英文对照
- 破裂强度标准
- 核心素养视域下小学数学命题的创新策略分析
- 有源光器件及无源光器件区别及基础
- 传热学第五版答案
- 制粒机内部结构图ppt课件
- 毕业设计(论文)基于汇编语言与接口技术的音乐盒设计
- 中小学校消防器材配备标准
评论
0/150
提交评论