课程设计:50000m3d城市污水处理(SBR)厂_第1页
课程设计:50000m3d城市污水处理(SBR)厂_第2页
课程设计:50000m3d城市污水处理(SBR)厂_第3页
课程设计:50000m3d城市污水处理(SBR)厂_第4页
课程设计:50000m3d城市污水处理(SBR)厂_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 课程设计课程设计题目:50000m3/d 城市污水处理(SBR)厂 目目 录录第第 1 1 章章 课程设计任务书课程设计任务书 .- - 1 1 - -1.1 设计题目 .- 1 -1.2 原始资料 .- 1 -1.3 出水要求水质 .- 1 -1.4 设计内容 .- 1 -设计成果.- 1 -第第 2 2 章章 设计说明书设计说明书 .- - 2 2 - -城市污水概论.- 2 -2.2 废水特性与水质分析 .- 2 -2.2.1 废水特性 .- 2 -2.2.2 水质分析 .- 3 -工艺流程比选.- 4 -工艺流程选取原则 .- 4 -工艺方案分析 .- 4 -工艺流程.- 7 -工艺

2、说明.- 8 -粗格栅间 .- 8 -污水提升泵房 .- 8 -细格栅间 .- 8 -曝气沉砂池 .- 9 -小型鼓风机房 .- 9 -配水井 .- 9 -氧化沟 .- 9 -二沉池 .- 10 -污泥泵站 .- 10 -污泥井 .- 11 -浓缩脱水机房 .- 11 -2.6 处理效果预测 .- 12 -处理成本估算.- 12 -投资估算.- 13 -效益分析.- 14 -电气自动化说明.- 15 -2.10.1 概述 .- 15 -自控系统的组成 .- 15 -中央管理计算机 .- 16 -现场控制器 .- 16 -控制方式 .- 16 -环保影响与措施.- 16 -主要污染源及污染物 .

3、- 16 -2.11.2 污染物治理措施及排放 .- 17 -第 3 章 污水工艺设计计算.- - 1818 - -3.1 污水处理系统 .- 18 -格栅 .- 18 -3.1.2 污水提升泵站 .- 18 - 曝气沉砂池 .- 19 -3.1.4 SBR 池设计计算.- 20 -接触消毒池与加氯间 .- 24 -污处理系统.- 24 -剩余污泥泵房 .- 24 -污泥浓缩池 .- 25 -浓缩污泥贮池 .- 26 -污泥脱水间 .- 26 -结论与建议 .- - 2727 - -参考文献 .- - 2828 - -附图 .- - 2929 - -第 1 章 课程设计任务书1.1 设计题目5

4、0000m/d 城市污水处理厂设计1.2 原始资料1处理流量 Q=50000m3/d2水质情况:BOD5=230mg/L; CODcr=400500mg/L; SS=280mg/L; pH=69。 1.3 出水要求水质污水处理厂的排放指标为: BOD5: 20 mg/L; CODcr: 60 mg/;SS: 20 mg/L; PH: 6.09.0。1.4 设计内容1方案确定按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择各处理构筑物,说明选择理由,进行工艺流程中各处理单元的处理原理说明,论述其优缺点,编写设计方案说明书。 2设计计算进行各处理单元的去除效率估;各构筑物的设计参数应根据

5、同类型污水的实际运行参数或参考有关手册选用;各构筑物的尺寸计算;设备选型计算,效益分析及投资估算。3平面和高程布置根据构筑物的尺寸合理进行平面布置;高程布置应在完成各构筑物计算及平面布置草图后进行,各处理构筑物的水头损失可直接查相关资料,但各构筑物之间的连接管渠的水头损失则需计算确定。4编写设计说明书、计算书成果1污水处理厂总平面布置图 1 张(含土建、设备、管道、设备清单等)2处理工艺流程图 1 张3主要单体构筑物(沉砂池、初沉池、曝气池、二沉池)平面、剖面图 2 张4设计说明书、计算书一份第 2 章 设计说明书城市污水概论城市污水主要包括生活污水和工业污水,由城市排水管网汇集并输送到污水处

6、理厂进行处理。 城市污水处理工艺一般根据城市污水的利用或排放去向并考虑水体的自然净化能力,确定污水的处理程度及相应的处理工艺。处理后的污水,无论用于工业、农业或是回灌补充地下水,都必须符合国家颁发的有关水质标准。 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理工艺。污水一级处理应用物理方法,如筛滤、沉淀等去除污水中不溶解的悬浮固体和漂浮物质。污水二级处理主要是应用生物处理方法,即通过微生物的代谢作用进行物质转化的过程,将污水中的各种复杂的有机物氧化降解为简单的物质。生物处理对污水水质、水温、水中的溶氧量、pH 值等有一定的要求。污水三级处理是在一、二级处理的基础上,应用混凝、过滤

7、、离子交换、反渗透等物理、化学方法去除污水中难溶解的有机物、磷、氮等营养性物质。污水中的污染物组成非常复杂,常常需要以上几种方法组合,才能达到处理要求。 污水一级处理为预处理,二级处理为主体,处理后的污水一般能达到排放标准。三级处理为深度处理,出水水质较好,甚至能达到饮用水质标准,但处理费用高,除在一些极度缺水的国家和地区外,应用较少。目前我国许多城市正在筹建和扩建污水二级处理厂,以解决日益严重的水污染问题。废水特性与水质分析 废水特性城市污水是排入城市排水系统中各类废水的总称,主要由城市生活污水和生产污水以及其他排入城市排水管网的混合污水。在合流制排水系统中还包括雨水,在半分流制的排水系统中

8、还包括初期雨水。城市污水中的污染物质,按化学性质来分,可分为无机性污染物质(如无机酸,碱、盐及重金属元素)和有机性污染物质(如腐殖质、脂肪等) ;按物理形态来分,可分为悬浮固体、胶体和溶解物质,不同城市的污水中所含物质总类与形态不同,城市生活污水和工业废水的比例不同,其污水性质亦不同。城市污水的性质主要是其物理性质,包括水温,颜色,气味,氧化还原电位等。 由于城市下水道系统是敷设于地下的,因此城市污水的水温具有相对稳定的特征,一般在1020之间,冬季比气温高,夏季比气温低。城市污水水温突然变化很可能是工业废水造成的,而水温的明显降低可能是由于大量雨水排入造成的。城市污水的正常颜色为灰褐色,但实

9、际上其颜色通常变化不定,这取决于城市下水道的排水条件和排入的工业废水的影响,大的管网系统由于污水在下水道停留时间过长,可能会发生厌氧反应,输入到污水处理厂的污水的颜色会变暗或显黑色。绿色、蓝色和橙色通常是由于电镀废水的排入造成的,白色则是洗衣废水造成的,而红色、蓝色和黄色等则多为印染废水所致。正常的城市污水具有发霉的臭位,在大管网系统或维护不好的下水道系统,城市污水将会有臭鸡蛋气味,这标志城市污水在下水道已经发酵,产生了硫化氢和其他产物。由于硫化氢气体危及人身安全,在下井下池作业时应严格按照防毒气安全操作规程进行。城市污水中有汽油、溶剂、香味等,可能是有工业废水排入。正常的城市污水约+100m

10、V 的氧化还原电位,小于+40mV 的氧化还原电位说明污水已经进入厌氧发酵或有工业还原剂的大量排入。氧化还原电位超过+300mV,指示有工业氧化剂废水排入。 水质分析水质分析主要是城市污水的化学指标:城市污水的 pH 值呈中性,一般为 6.57.5。pH 值的微小降低可能是由于城市污水在下水道中发酵所致。雨季较大时的 pH 值降低往往是城市酸雨造成的,这种情况在合流制排水系统中尤其突出。PH值的突然大幅度变化通常是工业废水的大量排入造成的。2.生化需氧量(BOD)生化需氧量是反映污水中有机污染物浓度的综合指标,是通过测定在指定的温度和指定的时间段内,微生物分解,氧化水中有机物所需氧量的数量来确

11、定的。微生物的好氧分解速度很快,约至 5 天后其需氧量即达到完全分解需氧量的 70%左右,因此,在实际操作中,用 BOD5来衡量污水中有机物的浓度。城市污水 BOD5在 1003000mg/L 之间。3.化学需氧量(COD)城市污水的 COD 一般大于 BOD5,两者的差值可反映城市污水中存在难以被降解的有机物的多少。BOD5/ COD 比值常用来分析污水的可生化性,可生化性好的废水 BOD5/ COD0.3,小于此值的污水应考虑生化技术以外的污水处理技术,或对一般生化处理工艺进行试验改革。COD 是用化学方法测定的有机物浓度,它不像 BOD5那样反映生化需氧量,另外,会有部分的无机物被氧化,

12、使结果产生误差。在城市污水分析时,二者同时使用。4.总有机碳(TOC)总有机碳的分析主要是为解决快速测定和自动控制而发展起来的。总有机碳是用总有机碳仪在900高温下将水中有机物燃烧氧化计算出的总有机碳。TOC 与 BOD5,COD 有一定的关系,由 TOC 可推断出 BOD5,COD 值。5.固体物质(SS,DS)城市污水中的固体物质按其化学性质可分为有机物和无机物,按其物理组成可分为悬浮固体 SS和溶解固体 DS。SS 是污水的一项重要指标,包括漂于水面的漂浮物如油脂,果核等,悬于水中的悬游物如奶、乳化油等,还有沉于底部的沉淀物,悬浮固体是将污水过滤,把截流在过滤材料上的物质通过烘干,称重而

13、测的。6.总氮(TN) ,氨氮(NH3-N) ,总磷(TP)氮、磷是污水中的营养物质,在城市污水生化过程中需要一定的氮、磷以满足微生物的新陈代谢,但这仅是污水中氮、磷的一小部分,大部分氮、磷仍将随水排到水体中,从而导致水体中藻类超量生长,造成富营养化问题。因此,除磷脱氮也是污水处理的任务之一。总氮是污水中有机氮和无机氮的综合,氨氮是无机氮的一种。总磷是污水中各类有机磷和无机磷的总和。城市污水中的重金属是指达到一定浓度时通常会对人体,生物造成危害的那些重金属,其中危害较大的有汞、镉、铬、铝、铜、锌等。汞极易沉底,易被生物甲基化而加剧毒性,可通过食物链引起疾病;镉易被生物富集,可导致骨损伤病症;铬

14、通过食物链被人摄取可导致慢性中毒,铜、锌是人体需要的微量元素,但大量的铜、锌将抑制微生物的新陈代谢作用,最终威胁人身安全。以上的这些化学指标大部分可以在城市污水处理过程中得到降解,其中 85%以上的SS,BOD5,TOC,NH3-N 可以通过污水处理得到去除,但重金属等一些有毒物质往往需要在工业企业通过处理控制。工艺流程选取原则城市污水处理的目的是使之达标排放或污水回用于农田灌溉、城市景观和工业生产等,以保护环境不受污染,节约水资源。污水处理工艺流程的选择应遵循以下原则:(1)污水处理应达到的处理程度是选择工艺的主要依据。(2)污水处理工艺的投资和运行费用合理,工程投资和运行费用也是工艺流程选

15、择的重要因素之一。根据处理的水质、水量,选择可行的几种工艺流程进行全面的技术经济比较,确定工艺先进合理、工程投资和运行费用较低的处理工艺。(3)根据当地自然、地形条件及土地与资源利用情况,因地制宜、综合考虑选择适合当地情况的处理工艺。尽量少占农田或不占农田,充分利用河滩沼泽地、洼地或旧河道。(4)考虑分期处理与排放利用情况。例如根据当地城市规划,先建一期工程,再建二期工程。(5)施工与运行管理:如地下水位较高、地质条件较差的地区,就不宜选用深度大、施工难度高的处理构筑物。也应考虑所确定处理工艺运行简单、操作方便,便于实现自动控制等。工艺方案分析一在本项目污水处理的特点为:1.污水以有机污染为主

16、,BOD/COD=0.46,可生化性较好,重金属及其它难以降解的有毒有害污染物一般不超标;2.污水中主要污染物指标 BOD5、CODcr、SS 值比一般城市污水高 80%左右;3. 污水处理厂投产时,周围的多数重点污染源智力工程已投入运行。二污水处理工艺的选择与污水的原污水水质、出水要求、污水厂规模、当地温度、用地面积、发展余地、管理水平、工程投资、电价和环境影响等因素有关。针对以上特点,以及出水要求,现有城市污水处理的特点,以下有几种处理方法供我选择:1A0 系统用以往的生物处理工艺进行城市污水三级处理,旨在降低污水中以 BOD、COD 综合指标表示的含泼有机物和悬浮固体购浓度。一般情况 7

17、,去除串 COD 可达 70以上,BOD 可达 90,6 以上 SS 可达 85以上,但氮的去除串只有 2096 左离嚼的去除串就更他因 A,二级处理出水中除含有少量合碳有机物尔还合有氮(氨氮和有机氮)和碘(溶解性露和有规蘑)。这掸的出水排到封闭水域的湖泊、河流及内海,仍会增匆水体中的营养成久从而引起水体中浮游生物和藻类的大量繁 S,造成水体的富营养化对饮用水源、水产业、工业用水带来很大的危害。在水泥缺乏的地区,欲将基级出水作为第二水 6,用于工业冷却水的补充九必须冉经脱氮、除碘等三级处理,还要增加较多的基逮物乃运行答硼酸。优点:(1)流程简单,只有一个污泥回流系统和混合液回流系统,基建费用低

18、;(2)反硝化池不需要外加碳源,降低了运行费用;(3)A/O 工艺的好氧池在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质;(4)缺氧池在前,污水中的有机碳被反硝化菌利用,可降低其后好氧池的有机负荷。同时缺氧池中进行的反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。缺点:(1)构筑物较多;(2)污泥产生量较多。2. 传统 A2/O 法传统 A2/O 工艺即厌氧缺氧好氧法,其三个阶段是以空间来划分的,是在具有脱 N 功能的缺氧好氧法的基础上发展起来的具有同步脱 N 除 P 的工艺。 该工艺在系统上是最简单的同步脱 N 除 P 工艺,其总的水力停留时间一般要小于

19、其它同类工艺(如 Bardenpho 工艺) 。在经过厌氧、缺氧、好氧运行的条件下,丝状菌不能大量繁殖,无污泥膨胀之虞,SVI 值一般小于 100,处理后的泥水分离效果好。该工艺在运行时厌氧和缺氧段需轻缓搅拌,以防止污泥沉积,由于生物处理池与二次沉淀池分开建设,占地面积也较大,该工艺在大型污水处理厂中采用较多,本次设计不予推荐。3.传统的 SBR 工艺传统的 SBR 工艺是完全间隙式运行,即周期进水、周期排水及周期曝气。传统 SBR 工艺脱 N 除 P 大致可分为五个阶段:阶段 A 为进水搅拌,在该阶段聚磷菌进行厌氧放磷;阶段 B 为曝气阶段,在该阶段除完成 BOD5分解外,还进行着硝化和聚磷

20、菌的好氧吸磷;阶段 C 为停止曝气、混合搅拌阶段,在该阶段内进行反硝化脱氮;阶段 D 为沉淀排泥阶段,在该阶段内既进行泥水分离,又排放剩余污泥;阶段 E 为排水阶段。在阶段 E 后,有的根据水质要求还设有闲置阶段。以下是 SBR 的优缺点:优点:(1)其脱氮除磷的厌氧、缺氧和好氧不是由空间划分,而是用时间控制的;(2)不需要回流污泥和回流混液,不设专门的二沉池,构筑物少;(3)占地面积少。 缺点: (1)容积及设备利用率较低(一般低于 50%) ;(2)操作、管理、维护较复杂;(3)自动化程度高,对工人素质要求较高;(4)国内工程实例少;(5)脱氮、除磷功能一般。4. 氧化沟工艺氧化沟是活性污

21、泥法的一种变形,它把连续环式反应池作为生化反应器,混合液在其中连续循环流动。随着氧化沟技术的不断发展,氧化沟技术已远远超出最初的实践范围,具有多种多样的工艺参数、功能选择、构筑物形式和操作方式。如卡鲁塞尔(Carrousel 2000)氧化沟、三沟式(T 型)氧化沟、奥贝尔(Orbal)氧化沟等。卡鲁塞尔氧化沟是一个多沟串联的系统,进水与活性污泥混合后在沟内做不停的循环运动。污水和会流污泥在第一个曝气区中混合。由于曝气器的泵送作用,沟中流速保持在/s。水流在连续经过几个曝气区后,便流入外边最后一个环路,出水从这里通过出水堰排出,出水位于第一曝气区的前面。卡鲁塞尔氧化沟采用垂直安装的低速表面曝气

22、器,每组狗渠安装一个,均安装在同一端,因此形成靠近曝气器下游的富氧区和曝气器上游以及外环的缺氧区。这不仅有利于生物凝聚,还使活性污泥易于沉淀。BOD 去除率可达 95%99%,脱氮效率约为 90%,除磷率为 50%。在正常的设计流速下,卡鲁塞尔氧化沟渠道中混合液的流量是进水流量的 50100 倍,曝气池中的混合液平均每天 520min 完成一个循环。具体循环时间取决于渠道长度、渠道流速及设计负荷。这种状态可以防止短流,还通过完全混合作用产生很强的耐冲击负荷力。以下是氧化沟的优缺点:优点:(1)用转刷曝气时,设计污水流量多为每日数百立方米。用叶轮曝气时,设计污水流量可达每日数万立方米。(2)氧化

23、沟由环形沟渠构成,转刷横跨其上旋转而曝气,并使混合液在池内循环流动,渠道中的循环流速为 0.3s,循环流量一般为设计流量的 3060 倍。(3)氧化沟的流型为循环混合式,污水从环的一端进入,从另一端流出,具有完全混合曝气池的特点。(4)间歇运行适用于处理少量污水。可利用操作间歇时间使沟内混合液沉淀而省去二沉池,剩余污泥通过氧化沟内污泥收集器排除。连续运行适用于处理流量较大的污水,需另没二沉池和污泥回流系统。(5)工艺简单,管理方便,处理效果稳定,使用日益普通。(6)氧化沟的设计可用延时曝气油的设计方法进行。即从污泥产量 W00 出发,导出曝气池的体积,而后按氧化沟的工艺条件布置成环状循环混合式

24、。缺点:(1)处理构筑物较多;(2)回流污泥溶解氧较高,对除磷有一定的影响;(3)容积及设备利用率不高。5. 污水生化处理污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的,其工艺构成多种多样,可分成活性污泥法、生物膜法、生物稳定塘法和土地处理法等四大类。日前大多数城市污水处理厂都采用活性污泥法。生物处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO2) 、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥) ;多余的生物污泥在沉淀池中经沉淀池固液分离,从净化后的污水中除去。由此可见,污水

25、处理工艺的作用仅仅是通过生物降解转化作用和固液分离,在使污水得到净化的同时将污染物富集到污泥中,包括一级处理工段产生的初沉污泥、二级处理工段产生的剩余活性污泥以及三级处理产生的化学污泥。由于这些污泥含有大量的有机物和病原体,而且极易腐败发臭,很容易造成二次污染,消除污染的任务尚未完成。污泥必须经过一定的减容、减量和稳定化无害化处理井妥善处置。污泥处理处置的成功与否对污水厂有重要的影响,必须重视。如果污泥不进行处理,污泥将不得不随处理后的出水排放,污水厂的净化效果也就会被抵消掉。综上所述,能够满足脱氮除磷的污水处理工艺很多,其基本原理都是相同的,每一种工艺均各有特点,分别适用于各种不同场合,应该

26、具体问题具体分析后加以采用。根据本工程特点,采用 SBR 法。图图 2.12.1 工艺流程示意图工艺流程示意图SBR 工艺是 Sequencing Batch Reactor 的英文缩写,它是序批式活性污泥工艺简称,SBR 工艺在(充排式)反应器的基础上开发出来的,该工艺适合当前水处理的发展趋势,属于简易、高效、低耗的污水处理工艺,与传统的活性污泥工艺相比具有很大的优势,同时具有脱氮除磷的功能。序批式活性污泥工艺的核心是反应池,集多种功能于一体,工艺简洁,自动化程度很高,管理简单。所谓序批式指一是运行空间按序列间歇运行,二是每个反应器运行操作分阶段按顺序进行,典型的 SBR 工艺包括五个阶段,

27、进水阶段、反应阶段、沉淀阶段、排水阶段、闲置阶段。在实际的操作中常常将部分阶段合并或者去掉,如闲置阶段。其主要的流程和构筑物说明如下:粗格栅间 粗格栅间的主要功能是去除污水中粗大的漂浮物,保证后续处理系统的正常运行。 粗格栅站的主要构筑物为进水渠和粗格栅井。 进水渠除接受厂外来水外,同时接受污水处理厂内的废水。进水渠上安装电磁流量计以监测流量。进水渠为钢筋混凝土结构。采用两条直壁平行渠道设计流量为 Qmax=600L/s。 设两座粗格栅井,结构型式为钢筋混凝土结构。粗格栅间安装两台 LHG 型格栅除污机(1 用 1 备) ,单机功率 1.1KW,单台设计流量 600 L/s,栅渠宽度 1200

28、mm,栅条间隙 21mm,过栅流速/s,栅前水深,安装角度 75,最大水位差 100mm。可设定为自动和手动控制。污水提升泵房主要构筑物由全地下式的钢筋混凝土结构矩形集水池、半地下式泵房及地面配电间组成。集水池长 12m,宽 6m,有效水深 2m。半地下式泵房高 3m,地面建筑高 5m。提升泵采用 3 台潜污泵, (2 用 1 备) ,其主要性能参数为 Q=300L/s,H=10m,N=45kW,带自耦装置。泵房内设电动单梁起重机 1 台,起重量 3t。各水泵的出水管汇集于出水井,出水集中后通过连接渠进入细格栅渠。细格栅间设细格栅间 1 座,为地上式构筑物,内部设 2 条栅槽,共安装 2 台机

29、械细格栅,细格栅前后均设置渠道闸门,以备检修之用。细格栅后安装无轴螺旋输送机 1 台与螺旋压榨机 1 台。根据格栅前后的水位差或根据设定的时间,实现机械格栅、无轴螺旋输送机、螺旋压榨机联动运行,机械格栅清捞起来的栅渣经无轴螺旋输送机传送至螺旋压榨机,压榨脱水后集中外运。曝气沉砂池曝气沉砂池的主要功能是去除污水比重大于 2.65,粒径大于的无机颗粒,以保证后续流程的正常运行。设 1 座钢筋混凝土矩形水池,分为 2 格。设计参数为:单格流量 290L/s,池子总宽度,池长12m,设计有效水深 2m,有效容积 84m3。双跨桥式自动刮砂机一套,桥长。吸砂泵 2 台,流量 2530m3/h,扬程 H=

30、5m,根据时间控制自动运行,同时设手动控制。砂水分离器 1 套,Q=60m3/h,由吸砂泵运行信号控制。穿孔曝气系统及曝气管路 2 组,微孔曝头 2000 个,由手动阀门调节气量。小型鼓风机房设置小型鼓风机房主要是为沉砂池曝气。小型鼓风机房一座,内设空气廊道,空气经滤过后进入廊道,鼓风机进气管与廊道连接,同时,房内设单梁悬挂起重机一台,起重量 3t。设置小型罗茨鼓风机 2 台,主要参数为:Q=5m3/min,P=39.2kpa,N=1.5kW。根据空气管路压力由PLC 自动调整供气量,并进行顺序轮换运行控制,同时设手动控制。配水井配水井的功能是将污水平均分配到 2 个污水生化处理系统。设计为矩

31、形钢筋混凝土配水井,池数:1 座。主要设备:可调式出水堰门 2 台,堰长 1500mm,材质为不锈钢。氧化沟功能:利用微生物菌群降解和去除污水中的污染物质,达到预期的水质净化目标。主要构筑物:结构型式:采用环形钢筋混凝土结构卡鲁塞尔氧化沟池数:2 座设计参数:单池设计流量 Q=290L55,水力停留时间 t=12h,单池平面尺寸 LBH=130363主要设备:曝气设备:设备类型:YHG1400A 表面曝气机设备数量:22 台(每池 11 台) 。设计参数:功率 N=18.5kw,浸没 400mm2/h,动力功率/kw.h。控制方式:根据氧化沟中溶解氧,由 PLC 自动控制开停。转碟碟片材质:玻

32、纤增强聚丙烯或玻璃钢。出水堰:设备类型:可调式自动出水堰设备数量:2 台(每池 1 台)设计参数:堰长 4m,可调范围 0300mm控制方式:根据氧化沟中溶解氧,由 PLC 控制出水堰高度材质:铝合金(或不锈钢)二沉池二沉池的主要功能是对处理后的混合液进行固液分离,以保证出水水质。设计 2 座周边进水、周边出水辐流式沉淀池,设计参数:单池设计流量:Qmax=290L/s,表面负荷3/m2.h,沉淀时间 3h,池直径 36m,池边水深。2.主要设备:刮泥机:设备类型:垂架式中心传动刮泥机设备数量:2 台设计参数:桥长 18m,控制方式:连续运行,由 PLC 自动显示工作状况并遥控或现场手动控制开

33、停;材质:水下部分为不锈钢,水上部分为热浸锌钢。溢流出水堰:设备类型:锯齿出水堰设备数量:2 套堰负荷:2.0 L单池堰长:107m;材质:铝合金(或不锈钢)污泥泵站功能:将一定数量的活性污泥回流到氧化沟,以维持生化系统活性污泥的浓度,保证其生化反应能力,同时将生化系统产生的剩余污泥提升到污泥井进而至脱水机房。结构型式:半地下钢筋混凝土矩形泵站数量:1 座设计参数:污泥回流比 75%,回流污泥量:剩余污泥产生量:污泥含水率:平面尺寸:8m6m主要设备:回流污泥泵设备类型:潜污泵(包括配套提升导轨,偶合底座等设备) ;设备数量:3 台(2 用 1 备)设计参数:单泵流量 600m3/h,扬程 7

34、m,功率 22Kw控制方式:根据进水流量,由 PLC 控制污泥总管阀门开启度和水泵开停数,根据水池水位控制水泵开停,根据每台泵的累计运行时间自动轮值,同时设手动开停控制剩余污泥泵设备类型:潜污泵(包括配套提升导轨,偶合底座等设备) ;设备数量:3 台(2 用 1 备)设计参数:单泵流量 25m3/h,扬程 10m,功率 3Kw控制方式:根据进水流量,由 PLC 控制污泥总管阀门开启度和水泵开停数,根据水池水位控制水泵开停,根据每台泵的累计运行时间自动轮值,同时设手动开停控制。污泥井功能:将系统的剩余污泥混合于此,并消除剩余污泥泵出泥不均,以获得均匀的污泥浓度。污泥的贮存为优化污泥脱水创造了条件

35、,确保脱水机的稳定运行;结构型式:半地下式钢筋混凝土方形水池数量:1 座设计参数:贮泥时间 2h,平面尺寸:8m6m,有效水深:5m。主要设备为搅拌器设备类型:可提升式小叶片搅拌器设备数量:1 台kW;控制方式:连续运行,由 PLC 显示工作状况,遥控或手动控制开停。浓缩脱水机房功能:降低污泥含水率,减少污泥体积结构型式:砖混结构双层地上建筑数量:1 座平面尺寸:10m5m3m设计参数:浓缩脱水机设备类型:DY3000 带式脱水机设备数量:2 台设计参数:815 m3/h,设计工作时间 24h。污泥投配泵设备类型:偏心螺杆泵设备数量:2 台设计参数:单机 Q=38 m3/h,扬程 H=4m,功

36、率 N=11kW加药系统设备类型:固体聚丙烯酰胺高分子絮凝剂制备及计量投加系统设备数量:1 套(含溶剂罐、储药罐各 1 个,计量泵 3 个)功率:N=11kW控制方式:根据脱水污泥量按比例控制絮凝剂投加量污泥输送机设备类型:无轴螺旋输送机设备数量:1 台设计参数:输送能力 58 m3/h单梁起重机设备类型:电动单梁悬挂式起重机设备数量:1 套设计参数:T=2t经过该污水处理厂处理的水后,可达到以下目标:CODcr: 60 mg/L; BOD5: 20 mg/L; SS: 20 mg/L; TN 20 mg/L;NH3-N: 5 mg/L;T-P: 1.5mg/L ;PH: 6.09.0。由于管

37、网不在考虑范围,所以该污水处理厂的建设费用就是厂的费用,在发达地区每吨水需要资金在 12001400 元每吨。由于我们设计的厂是在湖南,而且是在郊区地段,所以投资就要少点,我预算为 1000 元每吨;表 2.1 就是该项目投资估算。表表 2.12.1 工程投资估算表工程投资估算表序号项目数据1平均日污水量(m3/d)500002总变化系数3总装机功率(千瓦)4电机等设备效率5电费单价(元/度)0.56絮凝剂消耗量(kg/d)7絮凝剂单价(元/吨)40000.008自来水水价(元/吨)9污泥处置费(元/年)10职工定员(人)3011人均年工资及福利(元/人年)15000.0012工程总投资(万元

38、)13建设期贷款利息(万元)14资金回收年限(年)15由于本工艺设计的设备都有备用,曝气头等设备没有固定在水下,故检修不需停产或放空池水。所以运行天数按 365 天计算。下表 2.2 是该工程在建设方面所需要的的各种费用:表表 2.22.2 具体项目所需费用估算具体项目所需费用估算估算价值/万元序号工程土建工程安装工程设备购置工具购置其他费用合计1工程费用4028水处理费2074污泥处理费1569控制楼生产辅助建筑职工宿舍总平面工程生产辅助设备厂外工程2第二部分工程费用3预备费4建设为期贷款利息5工程总投资5000建设污水处理厂主要是三大效益:该城市位于华中地区,属于内陆经济发达地区,环境治理

39、的好坏直接影响到城市的良性发展。城市中有 50%左右的水经浏阳河排入湘江,使得湘江水体的有机污染进一部加重。湘江江段的出市水中的 SS、DO、TP、TN、NH3-N 等指标均超出了地面水环境质量标准 中 III 类水体水质标准值。保护和利用湘江水资源,使其满足和达到渔业,饮用水源水质标准的良好状态,有利于生活饮用、工农业和渔业用水,以及河流生态系统的稳定。该污水处理厂处理的污水包括生活污水和工业污水。其中工业污水大部分是可生化的有机废水。经该厂处理后的出水可达到一级排放标准。这样在减少城市对湘江水体污染的同时又满足了下游地区的饮用水和景观用水的质量。工程的实施对湘江河段水质有明显的改善,也会对

40、该市的社会生产产生巨大的影响。水质的改善将会促进该市的旅游业发展,有利于该市在经济全方面的发展,在国内及国际声誉将会进一步提高。同时对下游地区也会带来巨大的经济效益,保证当地及下游地区的人民的身体健康,保证湘江两岸社会经济的可持续发展。污水处理厂作为一项环境治理项目,其本身并不产生直接的经济效益。该污水厂建成后可以提高该市及湘江的环境质量,减轻污水排放所造成的污染危害。保护该市饮用水源,降低自来水成本,保护市民的健康,由此产生的间接经济效益尚无法作出定量计算,但定性的讲,其间接经济效益将是巨大的。同时该工程的实施有利于当地的渔业生产,保护洞庭湖的同时有利于长江地区的防洪。在提高饮用水质量的同时

41、有利于当地人民的健康。污水处理厂的污泥含有大量有利于林业增产的氮、磷、钾肥分,每年可为林业提供污泥作林肥。自动化说明 概述目前自动化技术在污水处理厂已广泛应用,发挥出显著技术经济效益。实践证明对污水处理过程的实时监测和控制,能够保证出水水质,解放生产力,提高生产效率,降低能耗。因此选用既经济又实用的自控系统对整个污水厂安全、合理、科学的运行起着重要作用。根据本工程的实际情况及工艺要求,采用国内外先进、成熟的由中央控制室微机和现场各级 PLC控制单元组成的两个层次的 DCS 系统。本系统集计算机技术、控制技术、通讯技术于一体,通过通讯网络将中央级监控总站和若干个现场控制分站连接起来,构成集中管理

42、、分散控制的微机监控管理系统,简称集散控制系统。DCS 系统克服了集中控制系统危险度集中、可靠性差、系统不易扩展、控制电缆用量大等缺陷,实现了信息、管理及调度真正的集中。现场设备的控制相对集中,避免了操作过于分散的缺点。当中控室微机故障时,各现场分站仍能独立和稳定工作,从根本上提高了系统的可靠性。同时采用以 PLC 为主构成的 DCS 系统有较高的性能价格比。自控系统的组成整个集散型系统由中央管理计算机和现场程序控制器二个层次构成。见控制系统图。中央控制室的计算机可以实现对污水厂的适时监控,读取相关的适时和历史数据,打印报表等。闭路监控系统则又从另外一个途径实现了值班人员对厂内重要设备的宏观监

43、视。这样,不仅节省了人力资源、提高了工作效率,而且提高了全厂的自动化生产、管理程度。在厂内污水处理的重要环节设有全天候带云台摄像闭路监控系统。粗格栅、细格栅、综合池、污泥脱水机房各设一套摄象装置,现场图象传输到中央控制室,中控制室设多画面处理器,值班人员可以监视到关键设备的运行情况。表 2.3 具体列出了各位置所需要设备数量。 表表 2.32.3 监控点一览表监控点一览表序号设置位置摄像机台数1粗格栅间12细格栅间13综合池14污泥脱水机房1中央管理计算机在厂内中央控制室设置两套中央管理计算机,两套计算机可分担不同功能,故障时互为备用。计算机配有 UPS 电源、彩色显示器、彩色打印机、黑白打印

44、机、标准功能键盘及其他附件。它主要完成对污水厂各工段的集中操作、监视功能。通过简单的操作,可进行系统功能组态,监视报警,控制参数在线修改和设置,以及记录、打印等。彩色显示器可直观地显示全厂各工艺流程段的实时工况、各工艺参数趋势画面,使操作人员及时掌握全厂运行情况。现场控制器根据工艺流程,本污水处理厂共设置 3 套现场可编程序控制器。各现场可编程序控制器均选用抗干扰能力强,运行稳定、可靠,在污水处理行业有成功经验和很好业绩的产品。同时,可编程序控制器均采用模块化结构,这样系统硬件配置可以根据用户需要相当灵活地自由组合,且维修方便。为保证各现场可编程序控制器的可靠性,各现场可编程序控制器均采用封闭

45、式的“黑匣子”结构,不设显示器、键盘、打印机。各现场控制器分布在各工艺段,与中控室中央控制计算机通过有线网络形式进行数据传输。控制方式全厂工艺设备的控制采用三种方式。根据地理位置和设备种类将现场设备相对集中在各现场控制室的各个控制箱内控制。控制箱上设手动/自动转换开关,当开关在手动位置时,通过现场控制箱上的启动/停止按钮操作。现场控制箱上手动/自动转换开关,在自动位置时,通过现场可编程序控制器(PLC)程序自动控制操作。当开关在自动位置时,也可以通过中央控制计算机键盘或鼠标远程控制设备的操作。主要污染源及污染物1废气本工程中主要气味污染源为粗、细格栅、沉砂池及污泥区。由于污水处理厂内很多污水处

46、理设施均为敞开式水池,其处理设施散发出氨、硫化氢等臭气,散发到大气中。臭气为无组织排放。2废水 本工程厂内废水主要来自职工生活、粪便水。 3噪声本工程噪声源主要为水泵、风机。 4 固体废弃物本工程固体废弃物为干污泥。 污染物治理措施及排放1臭气的防治措施由于目前的经济与技术条件限制,尚不可能对臭味进行处理。解决办法是设置防护绿化隔离带,将主要污染源进行隔离。设计时将这几部分集中布置并远离主厂区,位于厂区下风向,根据有关统计结果,在同等规模污水处理设施下风向 100m 范围内,其臭味对人的感觉影响明显,在 300m 以外,则臭味已嗅闻不到,H2Smg/m3。本工程厂址周围 300m 范围内无居民

47、,所以其臭味对周围居民影响不明显。2废水处理措施 本工程的生活污水经化粪池处理后,与生产废水一并排到集水井与城市污水统一进行处理,因其量很小,不会影响污水处理厂的处理效果。废水经处理后达到城镇污水处理厂污染物排放标准(GB189182002)中一级排放中的 B 标准。3噪声防治措施本工程设计中进水水泵采用了潜污泵,噪声的影响已经很小,对罗茨风机加隔声罩,并在车间值班室采用双层门窗,达到隔声降噪的目的。经过距离衰减和墙体隔声,到达厂界处(30m)噪声低于工业企业厂界噪声标准GB12348-90类区标准值(昼间 60 dB(A) ,夜间 50 dB(A) ) 。4污泥处置措施本工程对污泥进行干化处

48、理后外运,同时在设计及运行管理中尽量保证污泥不落地,而直接进入废弃物箱或直接装车外运,避免造成废弃物落地后的二次污染。污泥外运时采用半封闭式自卸车,外运填埋或堆肥后作为农田肥料。第 3 章 污水工艺设计计算3.1 污水处理系统格栅1.设计说明 格栅的截污主要对水泵起保护作用,采用中格栅,提升泵选用螺旋泵,格栅栅条间隙为 25mm。设计流量:平均日流量 Qd=5 万 m3/d=m3/h=m3/sQmax=KzQd=1.50=m3/s设计参数:栅条间隙 e=25.0mm,栅前水深 h=m,过栅流速 v=0.6m/s,安装倾角 a=75。2.格栅计算a.栅条间隙数 n 为 n=Qmax(sina)1

49、/2ehv=0.87(sin75。)1/2(506)48 条b.栅槽有效宽度 B设计用直径为 10mm 圆钢为栅条,即 S=。(48548=1.58m原污水来水面埋深为,栅槽深度。选用GH-2000 链式格栅除污机 2 台,水槽宽度,有效栅宽,实际过栅流速 v=/s,栅槽长度 l=。4.1=41.0m2c.栅槽高度计算过栅水头损失 h1h1=K(s/e)4/3(v2/2g)sina=35)4/3sin75.=6m设超高水深 h3=则 h=h1+h2+h3=1.2+0.06+0.3=3.栅渣量计算对于栅条间隙 e=25mm 的格栅,对与城市污水,每单位体积污水拦截污物为 W1=5m3/103m3

50、。每日渣量为:W=Qmax W186400/(Kz1000)=4m3/d拦截污物量大于 0.2 m3/d,须机械格栅。污物的排除采用机械装置:300 螺旋输送机,选用长度的一台。 污水提升泵站1.设计说明:采用 SBR 工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水提升后入曝气沉砂池。然后自流通过 SBR 池、接触消毒池。设计流量Qmax=3132m3/h。2.设计选型:污水经消毒池处理后排入市政污水管道,消毒水面相对高程为,则相应 SBR 池、 。污水提升前水位为,污水总提升泵流程为 4.00m,采用 3 台螺旋泵两备一用,其设计提升高度为H

51、=。设计流量 Qmax=3132m3/h,单台提升流量为 1566m3/h。采用 LXB1400 型螺旋泵 3 台,2 用一备。该提升泵流量诶 15001700m3/h。3.提升泵房:螺旋泵泵体室外安装,电机、减速机、电控机、电磁流量计显示器室内安装,另外考虑一定检修时间。 曝气沉砂池1.设计说明:污水经螺旋泵提升后进入平流曝气沉砂池,分为两格。沉砂池池底采用多斗集砂。设计流量 Qmax=3132m3/h=0.87m3/s,设计水力停留时间 t=2.0min,水平流速 v=0.08m/s,有效水深 H1=。2.池体设计计算: V=Qmax/60t=2610/602.0=105m3每格池的有效容

52、积为 53 m3 水流断面积 A= 53/2=m2; L=Vt=0.0860=m取 L=10.0m。 m总池宽为 2*2.65= m3.曝气系统设计计算:采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气。设计曝气量 q=3/(m3.h)空气用量 Qa=qQmax3132=940/h= m3/min供气压力 p=15kPa穿孔管布置:于每格曝气沉砂池池长边两侧分别设置两根穿孔曝气管,每格两根,总共 4 根。曝气管管径 DN100mm,送风管管径 DN150mm。4.进水、出水及撇油污水直接从螺旋泵出水渠进入,设置进水挡板,出水由池另一端淹没出水,出水端前部设出水挡墙,进出水挡墙高度均为。在曝气沉砂池

53、会有少量浮油产生,出水端设置撇油管 DN200,人工撇除浮油,池外设置油水分离槽井。5.排砂量计算:对于城市污水曝气沉砂工艺,产生砂量约为 x1=2.03/105m3每天沉砂量 Qs=Qmaxx1=7500010-5=m3/d 含水率为 P=65%假设储砂时间为 t=4.0d则存砂所需要容积为V=Qst=4.0=m3折算为 P=85.0%的沉砂体积为 V=10(100-65)/(100-85)=m3每格曝气沉砂池设两个砂池,共四个砂斗,砂斗高 2.65 m0.5)m2。砂斗总容积为 VV=42.65/3(2.652.65+0.5+2.65)=m3 每组曝气沉砂池尺寸为 LBH=15.3 SBR

54、 池设计计算污水进水量 50000m3/d,进水 BOD5= 230 mg/L ,水温 1230,处理水质 BOD5= 20 mg/L1参数拟定: BOD污泥负荷:NS=0.15kgBOD5/(kgMLSS.d); 反应池数: n=4; 反应池水深: H=5.5m; 主预反应区容积比:9:1 排出比: 1/m=1/3; 活性污泥界面以上最小水深:=;2. 根据实际工程经验设计反应池运行周期各工序时间:进水曝气沉淀排水排泥闲置2h 4-5h 1h 1 h -1 h3 反应池容积计算:a污泥量计算: MLSS =QSr/0.75Ns=50000*(230-20)/(1000*0.75*0.15)=

55、93333kg设沉淀后的污泥 SVI=150ml/g,污泥的体积则为 1.2*SVI* MLSS=16800 m3bSBR 池反应池容积计算:SBR 池反应池容积V=Vsi+Vf+Vb式中 Vsi代谢反应污泥的容积Vf反应池换水容积Vb保护容积 Vf为换水容积 Vf=50000/24*2=4167 m3 Vs=16800m3 单池的污泥容积为:Vsi=16800/4=4200 m3 则 V=Vsi+Vf+Vb=8367+Vb c反应器的尺寸构造如下:设计反应池为长方形方便运行,一端进水一端出水,SBR 池单池的平面面积为 60*30 m2,水深 m,池深 m。单池的容积为 V=60*30*5.

56、5=9900 m3,推算出保护容积为 Vb=1533m3。总的容积为 4*9900=39600 m3d反应器的运行水位计算如下:排水结束时水位:h1= m基准水位 h2= m高峰水位 h3= m警报,溢流水位:h4=5.5+0.5=m污泥界面:h5= h1-0.5=3 -0.5=2.50m4需氧量计算: R=aQSr+bV XV表 3-2 生活污水的 a b的取值 a0.53, b0.11。此设计中 a 5;b516275kg/dQmax=Q1.4=22785 kg /d 曝气时间以 4.5h 计,则每小时的需氧量为: 22785/=4367kgO2/h 每座反应池的需氧量:=4367/4=1

57、092kg/h5鼓风曝气量及设备选型: 设计算水温 30,混合液 DO 浓度为 2mg/L。池水深 6m,曝气头距池底 0.8m,则淹没水深为 m。根据需氧量、污水温度以及大气压的换算,供氧能力为 EA=10%a.计算曝气池内平均溶解氧饱和度,即Csb=Cs (+)510*026. 2bP42tO Pb =1.013*105+9.8*103*4.8105Pa Ot =100%=100%=19.3%)1 (*2179)1 (*21AAEE) 1 . 01 (*2179) 1 . 01 (*21确定 20和 30(计算水温)的氧的饱和度: CS(20)=9.17CSb(30)= CS(+)=(+)

58、510*026. 2bP42tO5510*026. 210*48. 1423 .19CSb(20)= CS(+)=9.17(+)510*026. 2bP42tO5510*026. 210*48. 1423 .19b计算鼓风曝气池 20时脱氧清水的需氧量: R0=)20()()20(024. 1*)*(*TTsbsbCCCR2030024. 1*)209. 9*1*95. 0(*85. 017. 96 .463=1747kgO2/h c求供气量:Gs=970m3/mimAER3 . 00d选 PBP 型橡胶盘形微孔曝气头服务面积:3m2/个 空气流量:1.53/(h个)h 氧利用率:18.4%2

59、7.7%e空气管道的沿程阻力损失 h1与局部阻力 h2损失之和: h= h1 +h2 =4.8kpaf空气扩散装置安装深度的的阻力: h3 =g空气扩散装置的阻力: h4 =kpah鼓风机所需要增加的压力为: H= h1 +h2 + h3+h4 =4.8+47.04+=kpa用六台鼓风机,4 用 2 备,则每台鼓风机的供气量为:GS=970/4=240 m3/min选 RME-200 型罗茨鼓风机,每台电动机功率为 75KW。 空气干管SBR池空气管平面布置图SBR池底扩散器布置图1根分管,(共12根分管,每根分管10根支管,每根支管16个曝气头) 空气管和曝气器的平面布置如上图,鼓风机房出来

60、的干管在相临的 SBR 池边上设置两根分管,两根分管分别设置 10 根支管,每根支管设置 50 个曝气器,每池共计 500 个曝气器,全池 2000 个曝气器。6上清液排出装置:撇水器污水进水量 Qs=50000m3/d,池数 N=5,周期数 n=2,则每池的排出负荷量为: 选 7 台 BSL600 型连杆式旋摆滗水器。出水管直径 500mm,滗水高度 25m。设排水管的水平流速为 2m/s 则排水量为4608m3/h,排水时间为 0.9 小时。7剩余污泥量计算以及排泥系统的设计:a 剩余污泥量:剩余污泥量主要来自微生物的增值污泥以及少部分的进水悬浮物构成,计算公式为W=a*(L0-Le)*Q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论