版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 码头结构型式和荷载1、码头由哪些部分组成?各部分主要作用是什么?码头由主体结构和码头设备两部分组成。主体结构包括上部结构、下部结构和基础。上部结构作用:a.直接承受船舶荷载和地面使用荷载,并将这些荷载传给地基;b.作为设置防冲设施、系船设施、工艺设施和安全设施的基础;c.将下部结构的构件连成整体。下部结构作用:a.支承上部结构,形成直立岸壁;b.将作用在上部结构和本身上的荷载传给地基。基础作用:承接码头上部、下部结构荷载;扩散应力;防止冲刷。码头设备作用:用于船舶系靠和装卸作业。2、码头按结构型式分类有那些型式、优缺点,按断面型式分、最佳适用条件?按结构型式分:重力式码头、板桩码头、高
2、桩码头、混合式码头重力式码头的工作原理:依靠结构本身和其上部结构的重量维持自身的稳定性。重力式码头的优点是:耐久性好,能抵抗大船、漂浮物的撞击,对超载、工艺变化适应能力最强。缺点是:自重大,波浪反射严重,泊稳条件差,地基应力大,一般须作抛石基床。适用条件:地质条件较好的地基板桩码头工作原理:依靠板桩入土部分的侧向土抗力和安设在板桩上部的锚碇结构来维持稳定。板桩码头的优点:耐久性好(相对),结构简单,材料用量少,便于预制,施工方便,可以先打桩,后挖墙前港池,能大量减少土方量。缺点是:耐久性差,波浪反射严重,泊稳条件差,对钢板桩需采取防锈措施,增加费用,对开挖超深反应敏感(应预留0.5m)。适用条
3、件:能打板桩的地基,万吨级以下的泊位,适用于有掩护的海港。高桩码头工作原理:通过桩台将作用在码头上的荷载经桩基传给地基。高桩码头的优点:波浪反射小,泊稳条件好;砂、石用量少 ;对挖泥超深适应能力强。缺点是:耐久性差,码头构件易损坏,损坏后修理比较麻烦;对地面超载、工艺变化的适应能力差;水平承载能力低,须设叉桩(大直径管柱例外)。 码头按断面型式分:直立式:水位变化不大的港口; 斜坡式:试用于水位变化较大的情况;半直立式:高水位时间较长而低水位时间较短 ;半斜坡式:枯水位时间较长而高水位时间较短。3、作用的分类有那些?作用的标准值如何确定?(1)作用的分类,a.按时间变异分:永久作用、可变作用、
4、偶然作用永久作用:在设计基准期内,其量值随时间的变化与平均值相比可忽略不计的作用,如自重力,预加应力,土重力,永久作用引起的土压力等。可变作用:在设计基准期内,其量值随时间的变化与平均值相比不可忽略不计的作用,如堆货,流动起重运输机械,可变作用引起的土压力,船舶荷载,波浪力等。偶然作用:在设计基准期内,不一定出现,但一旦出现其量值很大且持续时间很短的作用,如地震作用。b.按空间位置变化分:固定作用和自由作用固定作用:在结构上具有固定分布的作用,如自重力等。自由作用:在结构的一定范围内可以任意分布的作用,如堆货,流动机械c.按结构的反应分:静态作用和动态作用静态作用:加载过程中产生的加速度可以忽
5、略不计的作用,如自重力,土压力等。动态作用:加载过程中产生的加速度不可忽略不计的作用,如船舶的撞击力,汽车荷载等。(2)作用标准值的确定方法:首先根据观测到的作用数据,按概率统计的方法确定其概率模型;然后根据对结构的不利状态选取在建筑物设计基准期内作用最大(或最小)值的概率分布的某一分位值。4、作用效应组合的原则是什么?(1)对实际有可能同时出现在建筑物上的各种作用,应按其可能形成最不利的组合效应进行组合。(2)对受水位变化有影响的建筑物,在作用组合时应把水位作为一个组合条件。(3)对于不同的计算项目,应分别按各自的最不利情况进行组合。5、堆货的影响因素:码头用途;装卸及码头堆码工艺;货种和包
6、装方式;堆货批量,堆存期;码头断面形式;管理水平确定堆货荷载时应考虑下列主要因素:装卸及码头堆码工艺:不同货物,其堆存的极限高度不一样;即使是同一种货物,由于所用装卸工艺不同,其堆货荷载值也不相同。货种和包装方式货物批量和堆存期:小批、临时,小堆,利于货物的转运;大批、堆存期较长,大堆,提高库场利用率;码头结构型式:不同结构型式的码头,对堆货荷载反应的敏感程度不同。管理水平:管理严格堆存有序库场利用率高,不会出现超载。堆货分区:码头前沿地带、前方堆场、后方堆场6、门机荷载的取值原则:(1)单机作用主要考虑三种工作状态下的支腿、竖向荷载(2)两台门机作业一般只考虑状态1,且两台门机的最小距离为1
7、.5m(3)不考虑门机荷载的冲击系数。(4)门机荷载作用下,计算土压力时,应将门机荷载换算成等代线荷载: Pm=Pi/(2l1+2l0) 7、火车荷载的取值原则及加载规定:、港内铁路荷载通常按“中华人民共和国铁路标准荷载”即“中活载”取代实际机车和车辆轮压进行设计,普通活载一般对大跨度结构起控制作用,特种活载一般对小宽度(小于35m)结构起控制作用。 、“中活载”是轴压,计算轮压要除2、铁路机车在码头上行驶一般不考虑冲击力,离心力,制动力。、对直接承受铁路荷载的结构和构件(如梁,单向板,轨枕),港口铁路荷载的标准值应将“中活载”分别乘以荷载系数Kt。4、计算铁路荷载产生的土压力时,为方便计算,
8、其竖向计算活载采用线荷载形式。加载影响线的规定:(1)分别用“普通活载”和“特殊荷载”图式加载取最不利者,作为控制条件。加载时,两种荷载图式均可按最不利情况任意截取其加载荷载的长度. (2)、对同号不连续区加载,可截取两种荷载图式中任意数量的荷载加载。(3)、对同号连续区,则只能用一种荷载图式加载。 8、系缆力、撞击力产生的因素有那些?在计算中主要考虑什么因素,如何计算?系缆力产生的因素是:有掩护的海港:系缆力主要有风引起。无掩护的海港:系缆力主要由风、波浪引起。河港:系缆力主要由风、水流、冰等引起。系缆力的取值标准:、计算系缆力标准值不应大于缆绳的破断力;、 Fx、Fy应根据可能同时出现的风
9、和水流的情况,不应将两者最大值叠加,一般可按最大计算吹开风和可能同时出现的水流来叠加。、计算系缆力的标准值不应低于规范规定的下限值,若低于则取下限值。撞击力产生:1、船舶以一定速度靠向码头,此撞击力是一般高桩码头和墩柱码头的一项设计荷载。 2. 系泊中船舶受横向波浪作用,此撞击力为外海开敞式码头的主要设计荷载。挤靠力:1系泊于码头的船舶受到风、水流和波浪共同作用;2船舶离开码头时,在甩尾过程中,船首对码头的挤压。9、库仑、朗肯理论的适用条件是什么?各种情况下土压力如何计算?库仑公式是根据滑动土楔体的受力平衡条件推导出来的。库仑理论适用条件:、适用于无粘性土,不适用于粘性土;、适用于地面倾斜或水
10、平,墙背倾斜或垂直的陡墙,不适用于坦墙、适用于墙背粗糙或光滑,即或=。朗肯公式是以微分体极限应力状态理论推导出来的朗肯理论假定:土体为半无限弹性体,滑动楔体内土体每一点均达到塑性极限平衡状态。朗肯理论适用条件:、适用于粘性土(C)及砂性土(C=0 );、适用于地面水平,墙背垂直且光滑。10、推导杨森公式,计算储仓压力。杨森公式假设:填料不可压缩,任意深度y处的垂直压力qy均布仓无限深,即不考虑仓底的影响。 微元体平衡方程: qyS+rSdy-S(qy+dqy)-fqxUdy=0整理得: dy=dqy/(r-fkUqy/S) 根据边界条件:y=0,qy=q;并令A=kUf/S,1-m=e-yA
11、可得:qy=rm/A+(1-m)q,则qx=kqy 若:q=0,则qy=rm/A=r(1- e-yA)/A,即为规范附录公式。 见书P4311、什么叫地震荷载,考虑地震荷载的一般规定是什么?地震荷载有那些?答:在地震过程中,振动体本身产生振动惯性力,它包括建筑物自重的惯性力和动土压力、动水压力,统称为地震作用,即地震荷载。抗震设计的一般原则、地震设计除了震中地区烈度为8,9度以外,一般只考虑横向水平力,不考虑竖向力。、地震烈度小于7度地区,对水工建筑物一般不作抗震设计,但应按规范适当采取抗震构造措施。 、抗震设计以基本烈度作为设计烈度。基本烈度为考虑在一定时期内有可能出现的最大烈度,由国家地震
12、局普查而得中国地震烈度区划图、应把地震荷载作为特殊荷载和其它荷载进行组合,组合按抗震规范进行。第二章 重力式码头1、重力式码头的组成部分及各部分的作用式什么?.胸墙和墙身:是重力式码头的主体结构。构成直立墙面;挡土、承受并传递外力;连成整体;固定、安装码头设备。.基础 :扩散、减小地基应力,降低码头沉降;保护地基不受淘刷;整平地基,安装墙身。.墙后回填:形成地面;减小土压力(主要指抛石棱体,倒滤层);防止水土流失。.码头设施:靠船设施和系船柱等,减少船舶对码头的撞击和供船舶系靠,便于装卸作业。2、重力式码头建筑物的结构形式主要决定于墙身结构及施工方法。重力式码头基础的型式及其适用条件:基础型式
13、决定于地基土的性质、码头建筑物的结构形式和施工方法。、岩基:岩石地基本身坚固、承载力大、地基沉降量小,一般不需要做基础,而仅进行适当处理。现浇砼和浆砌石结构可不作基础整平,可把岩基面凿成阶梯形断面,最低一层台阶宽度1m,1:10倒坡。对预制结构(易倾斜),须用二片石和碎石整平,厚度0.3m、非岩石地基:一般需要做基础。(1)对水下安装预制结构,一般做抛石基石床; 干地施工的现浇砼和浆砌石结构 地基承载力不足时,要设置基础,如块石基础,钢筋砼基础或桩基等;如地基承载力足够,可不作基础,但应满足构造要求: a、在墙下铺1020cm厚的贫质砼垫层,保证墙身施工质量。 b、埋置深度0.5m,考虑挖泥超
14、深。 c、若码头前有冲刷,则基础埋深大于冲刷深度,或采用护底措施。(3)对软弱地基,可采用桩基或其他加固地基做基础。a 、强夯加固;b、堆载或真空预压加固;c、深层水泥搅拌(CDM)加固软基。3、抛石基床的作用,型式、适用条件是什么?基槽底宽如何确定?抛石基床的作用:扩散、减小地基应力,降低码头沉降保护地基不受淘刷;整平地基,安装墙身。(1)基床型式:明基床,暗基床,混合基床a.暗基床:用于原地面水深小于码头设计水深。b.明基床:用于原地面水深大于码头设计水深,且地基条件较好。c.混合基床:用于原地面水深大于码头设计水深,但地基条件较差(如有23m淤泥层),挖除后抛石或换砂,成混合基床。(2)
15、暗基床基槽的宽度可根据基床应力扩散的范围确定,但不小于建筑物底宽加两倍基床厚度。基槽底边线距墙底前趾与后趾的距离应根据码头建筑物的受力来确定。4、抛石基床顶面要预留沉降量原因:保证建筑物在允许沉降范围内正常工作,在抛石基床顶面要预留沉降量。 要求:对于夯实的基床,夯实后基床本身已相当密实,基床顶面的沉降主要是地基沉降引起的,设计时只按地基沉降量预留;对于不打夯的基床,除预留地基沉降量外,尚应预留由于基床压缩产生的沉降量5、重力式码头设置变形缝原因:为了减小由于不均匀沉降和温度变化在结构内产生的附加应力 位置:(1)设在新旧建筑物衔接处,(2)码头水深和结构型式改变处,(3)沿码头岸线地基土质差
16、别较大处,(4)基床厚度突变处,(5)沉箱接缝处。6、胸墙有何要求?其底部高程怎样确定?(1)胸墙总体要求:有足够的强度和稳定性;有可靠的耐久性;便于船舶系靠和装卸作业;施工方便;造价低。(2)胸墙底部高程的确定:胸墙的一个重要功能是将墙身的构件连为一体,故应尽量放低,以增加胸墙的稳定性、强度和足够的刚度。但对现浇或现砌的胸墙,底高程不得低于施工水位。施工水位:即混凝土的现浇水位。它根据施工队伍的机具、组织能力、混凝土浇注量和水位变化情况来确定。定义:为了现浇(砌)若干节点(胸墙,桩帽),低于该节点底面的水位在水位过程线上出现的时间为h,施工单位根据自有的机具设备、组织能力等,能保证在该时间段
17、内能完成的现浇任务。7、图示墙后抛石棱体的几种型式:(1)三角形:以防止回填土流失为主,减压效果较差,抛填料量最少。(2)梯形、锯齿形:以减压为主,兼防止回填土流失。锯齿形与梯形相比在减压效果相同的情况下,节约抛石量,但施工工序多,影响工期,质量不易保证。因此,对锯齿形一般不多于二级最多可采用三级。8、倒虑层作用:防止墙后回填土流失分层倒滤层由碎石层和“瓜米石”或粗沙或砾沙层组成,每层厚度不宜小于0.15m,总厚度不宜小于0.40m。倒滤层作用:为了防止墙后回填土流失,在抛石棱体的顶面和坡面,胸墙变形缝后面,以及卸荷板安装缝的顶面与侧面均应设置倒滤层。9、计算土压力填料容重选取原则:地下水位以
18、上采用天然重度,以下用浮重度。10、地面使用荷载考虑哪几种布置情况,并指出各布置型式的验算内容?以堆货为例,有三种布置情况:满布均载:垂直力最大,水平力最大。用于验算基床、地基承载力及建筑物的沉降和整体滑动稳定性。墙后满布均载:垂直力最小,水平力最大。用于计算抗倾、抗滑稳定性。局部均载:垂直力最大,水平力最小。用于验算基底后踵的应力。11、重力式码头一般计算内容:抗滑,抗倾,地基应力,整体稳定,构件强度一、按承载能力极限状态的持久组合进行计算或验算:1胸墙、整个码头建筑物和建筑物结构的一部分对其计算面前趾的倾覆稳定性验算2沿建筑物底面和建筑物各水平缝的抗滑稳定性验算3沿基床底面的抗滑稳定性验算
19、4基床和地基承载能力验算5建筑物整体稳定性验算6码头建筑物各构件的承载力验算二、按正常使用极限状态长期组合进行计算或验算:1.地基沉降验算建筑物构件裂缝宽度验算三、按承载能力极限状态短暂组合进行计算或验算:如果有波浪(墙前进行波波高大于1.0m时),当墙后尚未回填或部分回填时,已安装的下部结构在波浪作用下的稳定性验算; 如果有波浪,当胸墙后尚未回填或部分回填时,胸墙、墙身在波浪作用下的稳定性验算; 墙后采用吹填时,已建成部分在水压力和土压力作用下的稳定性验算; 施工期构件承载力验算。四、抗震验算 当工程所在地区的地震烈度在7度以上时,应按承载能力极限状态的偶然组合,对码头建筑物进行下列内容的验
20、算: 对胸墙、整个码头建筑物和建筑物结构的一部分计算面前趾的倾覆稳定性验算; 沿建筑物底面和建筑物各水平缝的抗滑稳定性验算;沿基床底面的抗滑稳定性验算。重力式码头考虑荷载有那些? 重力式码头上的作用按时间变异可分为以下三类: 永久作用:自重(建筑物,固定机械设备),填土产生的土压力。 可变作用:地面使用荷载产生的土压力,船舶荷载,施工荷载,冰荷载,波浪力等。 偶然作用:地震作用。12、重力式码头在稳定性验算怎样考虑船舶荷载和波浪力?(一)船舶荷载:计算稳定时,可不考虑撞击力、挤靠力。系缆力:Ny对码头影响不大,不考虑。 Nz数值较小,计算墙身稳定性时可不考虑,但在计算系船块体和胸墙稳定性时应考
21、虑。 Nx验算码头整体和部分稳定性时必须考虑。计算时按各分层沿码头长度方向的分布长度确定。对于阶梯形方块码头:沿墙以45°向下扩散,遇竖缝中止,再从缝底端向下继续扩散。对于扶壁码头:沿墙以45°向下扩散,遇竖缝中止。对于分段长度内为一个整体的码头(如现浇砼和浆砌石码头、沉箱码头等),在验算沿墙底稳定时,以分段长度作为船舶荷载的分布长度。 (二)波浪力:波高小于1m时:不考虑波浪力。波高大于等于1m时:即使要考虑,也只考虑墙前为波谷情况,即波吸力,墙后按静水位考虑。13、用图说明合力与前趾距离>B/3,e<B/6;=B/3,e=B/6;<B/3,e>B
22、/6时基床应力如何计算?上述情况相应的地基应力如何计算?规范对和基床应力有什么规定?为什么?答:过小,会出现应力集中,产生过大的不均匀沉降,甚至出现工程事故;规范:对非岩基,B/4,若<B/4,则应重新拟定结构尺寸。对岩基,由于不可压缩,可不加限制。对抛石基床,承载力设计值一般取600KPa。 基床承载力验算:r0×r6×6max小于等于6r14、块体码头断面设计的原则:尽量减小土压力:俯斜墙背,卸荷板,设置抛石棱体尽量使断面重心后移,以增大稳定,减小地基应力:宜采用衡重式断面,衡重式码头在施工过程重,若墙后未及时回填,存在向后倾覆的危险,为了保证墙在施工重的稳定性荷
23、控制基底应力分布,应对墙身合力到后趾的距离作限制:对非岩基:aB/3,对应顶宽/底宽1.6;对岩基:aB/4,对应顶宽/底宽1.9 在施工许可的情况下,尽量增大块体尺寸,以减少层数和数量;卸荷板的位置应适当低一些,一般卸荷板顶面以放在现浇胸墙的施工水位为宜。 15. 为什么说采用俯斜墙、卸荷板和减压棱体结构时有减小土压力作用?俯斜墙背:衡重式断面的背面为俯斜,从主动土压力公式可以看出,作用在俯斜墙背上的水平主动土压力比作用在垂直和仰斜墙背上的水平主动土压力小。 卸荷板:靠其悬臂部分对其上面填土和地面荷载的遮挡来减小其下面因上部荷载产生的主动土压力,压力减少的多少与卸荷板的位置和悬臂长度有关。减
24、压棱体:减压棱体的内摩擦角大,相应与成反比的主动土压力系数就小,故产生的主动土压力亦相应的减小。16、无底空心方块码头抗倾、抗滑稳定验算1抗倾:对无底空心方块码头,由于空心块体的填料与块体壁之间的摩擦力存在,填料有一部分重量直接作用到基床上,而另一部分则是通过块体壁传到基床上(同储仓压力)。因此,在计算抗倾稳定性时,应将前者扣除,即将填料起抗倾作用的竖向力标准值按下式扣除:GR=W0-ARZ,然后换算成单宽值。2抗滑:仍按一般公式计算,但基底与基床间的摩擦系数f应取综合摩擦系数,可取0.65。17、沉箱码头的接缝形式平接:当墙后设置抛石棱体或全部采用块石回填时。空腔对接:当墙后不设抛石棱体而全
25、部采用砂或开山土回填时,腔内设置倒滤层,平均缝宽5cm。 (3)注意:沉箱接缝的底面防漏。18、沉箱内设置纵横隔墙作用:为了增大沉箱的刚度,减小立板、底板的计算跨度,从而减小内力;便于封舱板或搭设工作平台。隔墙上挖孔:为了节省混凝土、减轻沉箱重量和降低重心(有利于沉箱浮游稳定)19、沉箱外壁计算时考虑:吊运下水时可能承受的外力沉箱溜放或漂浮时的水压力沉箱浮运时的水压力和波压力沉箱沉放时的水压力对箱格有抽水要求时的水压力使用期的箱内填料侧压力,波浪力和冰荷载。(二)沉箱底板计算应考虑沉箱放在基床上的受力情况:基床反力,底板自重力、箱格内填料垂直压力(按“贮仓”垂直压力计算);基床反力应考虑两种情
26、况:使用时期前趾反力最大和施工时期(墙后未回填)后踵反力最大。沉箱漂浮时的受力情况:底板受到相应于沉箱外壁 受力情况下的浮托力(对无掩护的海港应考虑波浪的浮托力)和箱内压仓水重力及底板自重力。计算图式:每个箱隔底板按四边固定板计算,趾板按悬臂板计算。21、翘尾的作用:减小基床宽度,即减少岸坡的挖、填方量和基床的抛石量;使合力作用点控制在三分点内,即>B/3,基底应力趋于均匀。肋板间距的确定:肋板间距与肋板数量有关,须经技术、经济比较加以确定,应根据立板和底板的支座弯矩和跨中弯矩大致相等的原则确定。22、护壁码头接缝及倒滤设施的构造。1、护壁接缝缝宽:护壁间垂直缝设计宽度采用4护壁高度,但
27、4cm。2、倒滤构造(当墙后无抛石棱体时)、立板的悬臂不长:在肋板外侧设置隔砂板;、立板的悬臂较长:在立板后设置隔砂板;、为了防止倒滤井中填料下沉后在胸墙下出现空隙而造成漏砂,应在胸墙底部的后面设置倒滤棱体23、沉箱沉箱外形尺寸的确定原则:长度或直径:应根据施工设备能力,施工要求的最小尺寸及码头变形缝间距确定。一般相邻变形缝之间设置一个沉箱。宽度:主要由码头建筑物的稳定性和地基承载力确定,同时也要满足浮运吃水,干舷高度和浮游稳定性的要求。若不满足,应尽量从施工上采取措施,如用起重船或浮筒吊护,不得已才考虑增大宽度。高度:顶部高程宜适当放低,但不得低于现浇胸墙的施工水位,同时,若箱内填料采用船上
28、抛填,则沉箱顶面不宜太高。此外,构造上沉箱要伸入胸墙3050cm,以保证整体。护壁沉箱外形尺寸:1高度:由码头水深和胸墙的底标高确定,且不低于胸墙的施工水位,护壁顶端宜嵌入胸墙10cm。2宽度:由结构稳定性和地基承载能力确定。但构造上应满足:前趾长1m;翘尾长底宽/4;翘尾角度。 3长度:预制安装时,取决于起重能力,但H/3;干地现浇时,取变形缝间距。物体浮游稳定原理 :重心:重力作用线通过的中心,C。浮心:浮力作用线通过的中心,随物体水下部分形状而变化,W。定倾中心:浮心运行轨迹的中心,M。定倾半径:定倾中心道浮心W的距离,。定倾高度:定倾中心M到重心C的距离,m。a:重心到浮心的距离。物体
29、浮游稳定三个状态:m=-a>0重心在定倾中心下方,重力产生稳定力矩,稳定平衡。m=-a=0重心与定倾中心重合,随遇平衡(临界状态)。m=-a<0重心在定倾中心上方,重力产生倾覆力矩,不稳定。24、分别叙述护壁码头的立板、底板、肋板的荷载特点及计算图式? 、立板计算1、作用:土压力,地面使用荷载,剩余水压力,波吸力。2、假定:、立板不承受胸墙传来的外力,此外力全部由肋板承受;、不考虑胸墙底宽对土压力的遮掩作用;除多肋护壁外,不考虑底板对立板的嵌固作用;、一般取设计低水位时,水平力最大的组合。3、计算图式:、单肋:按单宽悬臂板计算;、双肋:按两端悬臂的简支板计算;(3)多肋:同沉箱的外
30、壁计算 、底板计算1、作用:基床反力,底板自重,底板上填料垂直压力荷地面使用荷载。基床反力的大小和分布与计算水位,地面使用荷载,船舶荷载等有关,计算情况比较复杂,实际计算一般取设计低水位,按规范进行组合:、无尾护壁:取最大水平力与最大垂直力或最大水平力与最小垂直力两种组合;、有尾护壁:取最大水平力与最小垂直力或最小水平力与最大垂直力两种组合。2、计算图式:内底板与尾板的计算图式同立板(单、双、多),趾板按悬臂板计算。、肋板计算 1、作用:立板计算所考虑的作用+胸墙传来的外力,如系缆力和力矩,胸墙上的土压力和力矩。计算一般取设计低水位和相应的水平力最大的组合。2、计算图式:立板与肋板共同构成一个
31、固定在底板上的T形断面的悬臂梁,因此,肋板按固定在底板上的变截面的T形梁计算,翼缘宽度按规范确定。 25、大直径圆筒码头的尺度确定原则:1高度:由码头的水深和埋入地基的深度确定。埋入地基的深度由建筑物的稳定性和地基持力层深度决定,一般埋深2.05.0m。 2直径:由码头稳定性及使用要求确定,一般为514m。 3壁厚:由强度计算确定,一般为2530cm,D>14m时,壁厚应适当加厚。4、其它:、应根据码头稳定和减小基床应力的需要设内趾和外趾(内趾采用圆环形,外趾采用折线形),长度0.51.0m,且两者不宜相差过大。、圆筒直接承受船舶荷载或圆筒顶设置轨道梁支撑柱时,应将圆筒上部的壁适当加厚,
32、形成加强圈梁。26、大直径圆筒码头底部构造型式及作用,上部结构与卸荷板型式与作用各是什么?答:大直径圆筒码头,按基础形式可分为:沉入地基中、直接放在挖出的基槽内、放在抛石基床上。圆筒的上部结构,除胸墙外,一般在圆筒顶设置预制的钢筋混凝土盖板,每个圆筒设一块。盖板还用作胸墙混凝土现场浇注的底模。盖板也可做成前后两块板,前板用作胸墙混凝土现场浇注的底模,后板的作用是将上部的填料重力直接传给筒体,可减小前趾的应力,增大稳定性。27、大直径圆筒码头填料防漏措施 :1)在圆筒两侧设两个凸耳,凸耳之间形成凹槽。在两相邻的凹槽所形成的空腔内,用水下浇筑混凝土填充,或直接填充碎石2)在两相邻的圆筒之间预留20
33、0300mm的安装缝。在接缝的前后两侧,架设木板或钢模板且用螺栓固定,然后用袋装混凝土填缝。3)在两相邻的圆筒之间填缝的后侧防治梯形断面填缝条,当圆筒后回填砂料时,填缝条与圆筒之间尚应铺设土工织物。28、大直径圆筒码头的计算特点是什么?除一般重力式码头计算以外,尚应计算圆筒结构的内力和预制胸墙垫板的内力,计算是以单个圆筒为计算单元,而不是以每延米为计算单元。1、对一般计算应注意以下几点:、圆筒后面主动土压力,近似按墙背为平面计算,=/3;、抗滑计算,取综合摩擦系数,f=0.65,(同无底空心方块)、抗倾计算,(同无底空心方块)基底应力按除应验算大面积应力外,还应验算前趾的局部应力,在大面积应力
34、验算时,可取墙底计算宽度等于0.8DR,DR为圆筒底部的外轮廓宽度。 2、圆筒结构计算:取1m高的圆环进行计算29、重力式码头按墙身结构分类:方块码头,沉箱码头,护壁码头,大直径圆筒码头,格形钢板桩码头,干地施工的现浇砼和浆砌石码头及混合式结构等。.按墙身结构型式分方块码头沉箱码头:优点:整体性好,抗震能力强,施工速度快,水下工作量少,造价低。缺点:钢材用量大,耐久性不如方块结构,且需专门的预制下水设备;适用:当地有沉箱预制场或工程量较大,工期短的大型码头。护壁码头:优点:结构简单,施工速度快,节省材料,造价低;缺点:整体性差,耐久性差;适用:有起重运输设备,有预制能力的情况或有干地施工条件。
35、 大直径圆筒码头:特点1、钢材、砼用量少,每沿米材料用量与圆筒直径无关,只与码头高度荷圆筒壁厚有关。2、对地基条件的适应能力比其它重力式码头强3、构造简单,较受业主欢迎4、圆筒内填料可就地取材。适用条件:地质条件较好的深水码头,如广西防城港D=16m,或地基表面有不厚但又不薄的软土层的情况。 格形钢板桩码头,干地施工的现浇砼和浆砌石码头及混合式结构等。.按施工方法分类: 干地现浇或砌筑的结构;水下安装预制结构第三章板桩码头1、板桩码头的组成部分、类型,各自的优缺点及适用条件板桩码头工作原理:由沉入地的基板桩墙和锚碇系统共同作用来维持其稳定性。板桩码头的组成部分及其作用:1)板桩墙,是板桩码头的
36、最基本的组成部分,是下部打入或沉入地基中的板桩所构成的连续墙,其作用是挡土并形成码头直立岸壁。2 )拉杆,当码头较高时,墙后土压力较大,为了减小板桩的跨中弯矩(以减小板桩的厚度)和入土深度以及板桩墙顶端向水域方向的位移,应在适当位置设置拉杆,以传递水平荷载给锚碇结构。3)锚碇结构,承受拉杆拉力。4)导梁,连接板桩荷拉杆的构件,拉杆穿过板桩固定在导梁上,使每根板桩均受到拉杆作用。5)帽梁,作用相当于前面的胸墙,一般现浇。当水位差不大时,可将帽梁和导梁合二为一,成为胸墙。6)码头设备,便于船舶系靠和装卸作业。 类型. 优缺点及适用条件:一、按板桩材料分木板桩码头:强度低,耐久性差,木材用量大,现在
37、很少使用。钢筋砼板桩码头:耐久性好,用钢量少,造价低,但强度有限,一般用于中小型码头。钢板桩码头:强度高,重量轻,止水性好,施工方便,但易腐蚀,耐久性较差,适用于建造水深较大的海港码头,特别多用于要求不透水的船坞坞墙、施工围堰和防渗围幕等工程中。二、按锚碇系统分无锚板桩:结构简单,只有板桩墙和帽梁两部分。板桩呈悬臂工作状态,承载能力小,墙顶变形大,在码头中一般不用。有锚板桩:当墙高较大时,为了减小板桩的断面尺寸和桩顶位移,而设置拉杆和斜拉桩锚碇。单锚板桩适用于墙高在610m以下的中小型码头。双锚板桩 多锚板桩。双锚或多锚:适用于墙高大于10m 的码头,但应用较少。原因:下拉杆高程较低,施工困难
38、(一般要求水上穿拉杆);上下拉杆的位移很难协调,常会使某一拉杆严重超载。斜拉板桩不设水平拉杆,而增设斜拉桩来锚碇,使锚碇结构至板桩墙的距离大大缩短,减少了墙后开挖,特别适用于墙后不能开挖或开挖不经济的情况。但是斜拉桩承受水平力的能力有限,因此多用于中小型码头。三、按板桩墙结构分类普通板桩墙:由断面和长度均相同的板桩组成,其优点是板桩类型单一,施工方便。长短板桩结合:在普通板桩墙中,每隔一定距离,打入一根长板桩,这样既保证了稳定,又降低了造价。适用于土质条件较差,在较深处才有硬土层的情况。主桩、板桩结合:将长桩的断面加大,成为主桩,以充分发挥长桩的作用,而将短桩的断面减小,成为辅桩,从而构成主桩
39、板桩结合。适用同上。主桩挡板(套板)结合与3不同的是,它是在主桩后面放置挡板或在主桩之间插放套板来挡土。墙后土压力直接作用在挡板(套板)上,最后全部传给主桩,主桩受力很打,因此适用于水深不大的情况,且要求先开挖港池,以便挡板(套板)的安放。 四、 按施工方法分 预制沉入板桩地下墙 水下砼连续墙:用钻机在地下开沟槽,用水下浇注砼方法形成连续墙;预制板桩成槽沉放:将预制的钢筋砼板桩放在沟槽内,板桩前后用低标号的水泥土浆填满2、钢筋砼矩形板桩的构造型式 矩形T形组合形 圆形(2)矩形,A特点:形状简单,制作方便,沉桩容易,接缝容易处理。但抗弯能力差,费材料。B、尺寸:其厚度应根据强度和抗裂要求由计算
40、确定,一般为2050cm,宽度由打桩设备的龙口宽度决定,一般为5080cm。(3)板桩的立面和接缝:矩形板桩的特点:一侧阴榫拉通,另一侧从桩顶到设计水底以下1m以上做成阴榫(不得低于设计冲刷水位),1m以下做成阳榫;设计水底以上断面形成空腔,内填细石砼;顶面3050cm范围内,两侧各缩进24cm,以便桩设替打;底部一侧做成斜面,使得后一板桩打入时,紧贴前一板桩,接缝严密。 (4)板桩的配筋,钢筋砼板桩:普通钢筋砼板桩25#,预应力钢筋砼板桩35#,设计中应尽可能采用预应力,以增加抗裂性和耐久性。 3、锚碇结构常用型式及受力特点?锚碇叉桩及斜拉桩宜布置在板桩主动破裂面以外的目的是什么?型式:、锚
41、碇板(墙):依靠其前面回填料的土抗力来承受拉杆拉力,承载能力较小,水平位移较大。、锚碇桩(板桩):靠桩打入土中嵌固工作,其深度由“踢脚”稳定来确定,此结构属于无锚桩,承载能力较小,水平位移较大;、锚碇叉桩(斜拉桩):靠桩的轴向拉压和拉拔承载力来工作,其稳定性由桩的承载能力确定。4、拉杆的位置在高程上宜选在何处?减小拉杆挠曲及防锈措施?拉杆作用:减小板桩的跨中弯距,减小入土深度以及板桩墙顶端向水域方向的位移。拉杆的位置在高程上的确定:从减小板桩墙的跨中弯矩来看,拉杆宜放在标高较低处,但为了保证水上穿拉杆和导梁胸墙的施工条件,一般在平均水位以下,设计低水位以上0.51.0m,且不得低于导梁或胸墙的
42、施工水位。减小拉杆挠曲及防锈措施 夯实拉杆下的填土,或在拉杆下设置支撑,以减小沉陷,支撑形式有支撑桩、设砼垫块或垫墩、铺碎石或灰土垫层。在拉杆两端设置连接铰,以消除其附加应力。在拉杆上做个U形防护罩,使拉杆上面的土重及地面荷载不直接作用载拉杆上,而通过防护罩传到拉杆两侧的地基上。防锈处理,涂两层防锈漆,并用沥青麻袋包裹两层。回填料严禁带有腐蚀性。 5、板桩设置排水设施的目的及其构造:为了减小和消除作用在板桩墙上的剩余水压力,板桩墙应在设计低水位以下设置排水孔,孔径58cm,孔距35m,孔后设置抛石棱体,以防止填土流失。6、板桩墙的主要设计荷载有那些?土压力的特征有哪些以及影响因素或原因是什么?
43、剩余水压力的影响因素有那些?如何考虑此荷载?船舶荷载如何考虑?板桩墙的主要设计荷载、板桩码头上的作用力:永久作用:土体产生的主动土压力,剩余水压力;可变作用:地面可变荷载产生的土压力、船舶荷载、施工荷载、波浪力;偶然作用:地震荷载。板桩墙的稳定性、墙体的强度和拉杆力等值,主要由低水位情况控制。土压力:板桩墙在外力作用下,墙体将发生弯曲变形;因此,沿墙高各点的水平位移不同。板桩墙上各点的土压力不仅与该点以上的土重、地面可变作用以及土的物理力学性质有关,而且与该点墙体的水平位移密切相关。主动土压力特点:呈R 形分布,原因:关键是沿墙高位移不同。因为板桩上部有拉杆拉住,下端嵌固于地基中,上下两端位移
44、较小,跨中位移较大,墙后土体在板桩变形过程中呈现拱现象,使跨中一部分土压力通过滑动土条间的摩擦力传向上、下两端。从而是墙后主动土压力产生上下大,中间小的R 形状。 影响板桩墙上各点位移不同而造成墙后主动土压力呈R 形分布的主要因素有:板桩墙的刚度:刚度越小,R形越显著;锚碇点位移:越小,R形越显著;施工顺序:先打板桩,后开挖比反之更显著被动土压力的特点:墙下端扎入地基中,当墙体受侧向力作用后,墙前入土段将产生被动土压力。当入土深度不大时,入土段墙体只出现向前的位移,墙前被动土压力与刚性墙的相似。在板桩墙入土深度较大时,板桩嵌固于地基中,其下端还产生向后翘;因此。入土段的上部墙产生墙前被动土压力
45、,其下部产生墙后的被动土压力。 特点:墙前被动土压力比理论计算值大1倍左右,而墙后(下端)被动土压力比计算值小一半左右。墙前被动土压力增大的原因:A、板桩在水底处发生向下转动变形,使墙前土体受到向下的挤压摩擦力。B、板桩向前变形,压挤墙前土体,使土的密实度增大,抗剪强度提高。C、入土段上部墙体对土体产生向下的摩擦力,使土体的稳定性增大。墙后被动土压力减小的原因A、板桩底部被地基嵌固,使板桩下端变形较小,达不到极限被动土压力所需的位移值;B、板桩底端发生向上转动变形,给墙后土体一个向上的“掘出力”;C、板桩下端与土体产生向上的摩擦力,使土体的稳定性减小。 、剩余水压力:水压力取决于水位涨落情况、
46、板桩墙排水好坏、回填土及地基土的透水性等。海港钢筋砼板桩码头,当板桩墙设有排水孔,墙后回填粗于细砂颗粒的材料可不考虑。对海港钢板桩码头,地下墙式板桩码头及墙后回填细砂的钢筋砼板桩码头,=1/31/2平均潮差。对河港则根据地下水位按实际情况取定。 3船舶荷载:只考虑系缆力,不考虑撞击力和挤靠力,但要加以区分:系船块体单独锚碇,板桩不考虑系缆力;系船块体和胸墙或帽梁一起现浇,且不单独锚碇,板桩应考虑系缆力4.码头地面荷载:以土压力的形式作用于板桩墙上。5、浪力:只计波吸力,且不能与船舶荷载同时出现。6、地震荷载:地震地区7、挖泥时超深的考虑,超深的结果:使板桩墙的入土深度减小和墙体的计算跨度增大,
47、从而降低了板桩墙的稳定性,增大墙体的跨中弯矩和拉杆拉力。计算板桩墙时,还须考虑港池挖泥时可能出现的超深(0.5m)和冲刷水深。 地面荷载布置,当计算板桩跨中最大弯矩时和板桩最大负弯矩及最大拉杆拉力时,分别该如何布置?为什么?8、计算单锚板桩用弹性线法时,板桩的工作状态特征,计算图式及计算方法的特点?如何确定入土深度?单锚板桩墙的工作状态1、第一种情况:板桩的入土深度最小,在水平力作用下,板桩绕上端支撑点转动,板桩中只有一个方向的弯矩,且数值最大,板桩入土段发生较大位移,所需板桩长度最短,但断面最大,按底端自由计算。这种情况即为自由支撑法,算得的入土深度往往需要加长,实际也就接近第三种情况2、第
48、二种情况:入土深度和受力情况介于第1、3之间,入土段比第1种稍深,受力后,底端只有转角,没有位移。也属于自由支承状态。3、第三种情况:入土深度较深,入土部分出现与跨中相反方向的弯矩,板桩墙弹性嵌固于地基中。这种状态,所需板桩断面最小,入土部分位移小,稳定性好,为我国所采用(弹性线法)。第四种情况:类似第3种状态,但入土深度更大,固端弯矩大于跨中弯矩,数值并不比第3种状态小,稳定性有富裕,但对减少墙体跨中弯矩非常有限,一般无必要。9、有锚板桩计算新方法,稳定破坏状态有几种?板桩的入土深度是按何种稳定破坏状态确定的?推导确定入土深度的理论公式。竖向弹性地基梁法(m法)有锚板桩的稳定破坏状态锚碇失稳
49、:由于拉杆断裂或锚碇结构系统破坏而造成;板桩墙失稳:由于入土深度不够,而使板桩墙绕拉杆锚碇点发生转动而破坏,即“踢脚”稳定破坏;整体稳定性破坏:由于板桩墙入土深度不够或拉杆长度不够,而使板桩墙和后方土体一起产生稳定性破坏。10、 “m”法的基本假定A、假定土为弹性介质,地基系数随深度成正比,C=mZ;B、不考虑桩土之间的粘聚力、摩擦力;C、桩按实际刚度、并作为一个弹性构件考虑;土体应力、应变要符合文克尔假定,即地基表面任一点的压力强度于该点的沉陷成正比 。=k0y=Cy12、m法优点:a、入土深度的确定,m 法比弹性线法好,特别时在土质较差时,m法更接近,建议在软土地基上的板桩工程不能用弹性线
50、法确定入土深度。b、反映了刚度的影响(EI);c、可考虑锚碇点的位移,符合实际情况;d、m 法计算结果与原型试验值较吻合;e、m 法适用性强。 14、锚碇板、叉桩(桩)的计算方法:板桩 1、其长度和内力可按受集中水平力RAX(对于锚碇板桩为Ra)作用的无锚板桩墙的计算方法计算。 2、锚碇桩(板桩)到板桩墙的最小距离应满足式(3-3-10)的要求,式中th为锚碇桩变形第一零点到码头地面的距离。 3、拉杆处的水平位移,可按竖向弹性地基梁法计算,但50mm。锚碇叉桩:考虑两端为铰接,不考虑周围土体对桩作用。叉桩设置原则:叉桩必须位于板桩墙墙后土体主动破裂面以外;压桩桩尖距板桩墙的距离不得小于1.0米
51、。16、导梁、帽梁和胸墙设计的方法? 导梁:近似按刚性支承连续梁计算,荷载q=Ra;导梁和导梁悬臂段产生的最大弯矩为:;钢筋砼导梁应按强度配筋,并验算裂缝宽度,导梁强度应满足: 帽梁作用:各板桩不均匀沉降产生的变形应力和船舶荷载。设计:当系船块体单独锚碇,帽梁不受系缆力影响时,一般只需按构造要求进行配筋 当系船块体与帽梁整体现浇,且不单独锚碇,帽梁受系缆力的影响时,需按强度配筋,并验算裂缝宽度。计算图式:按文克尔假定的弹性地基梁进行计算。即将帽梁视为弹性地基上的梁,弹性地基为板桩墙拉杆以上的悬臂段。根据地基系数的概念(一个单位面积移动一个单位位移所需的力),k可按悬臂梁计算而得: 胸墙设计:竖
52、向按悬臂梁计算,取拉杆处为固端。系缆力作用时;撞击力作用时。 水平方向:按刚性支承连续梁计算:对工字型断面,取下翼板为导梁;对L型断面,取平台板为导梁;对矩形或梯形截面,取拉杆附近的0.50.7米高度部分为导梁。17、锚碇板(墙)的拉杆位置tc确定的原则是什么?断面设计时有何特点?(分别对不连续板和连续板叙述)18、板桩码头整体稳定性验算:1、板桩码头整体稳定性验算可采用圆弧滑动法; 2、计算只考虑滑动面通过板桩桩尖的情况,如桩尖以上或以下附近有软土层时,尚应验算滑动面通过软土层的情况。3、当圆弧从桩尖以上通过时,计算时不计截桩力,当滑动面从锚碇结构前通过时,计算时不计拉杆力对稳定性的影响。
53、板桩墙的稳定性、墙体的强度和拉杆力等值,主要由低水位情况控制。第四章高桩码头1、高桩码头的组成部分及作用:1、上部结构:码头地面,将桩基连成整体,并把荷载通过桩基传给地基,安设各种码头设备。2、桩基:支承上部结构,并把作用在上部结构上的荷载传给地基,同时也起到稳固地基的作用,有利于岸坡稳定。3、挡土结构:为了减小码头的宽度和与岸坡的衔接的距离,而设置挡土结构,以构成地面,有前板桩墙,后板桩墙和重力式挡墙。4、岸坡:要求有足够的稳定性,对波浪、水流大的地方和地质差的情况,需要进行护坡处理,以免受冲刷。5、码头设备:便于船舶系靠和装卸作业。 2、高桩码头按上部结构有何结构型式:梁板式:梁板式码头上
54、部结构主要由面板、纵梁、横梁、桩帽和靠船构件组成。优点:受力明确;排架间距可加大,以充分发挥桩的承载能力;可采用预应力构件,预制装配化程度高,施工速度快;上部结构较厚,靠船构件悬臂短,受力条件好。缺点:构件类型和数量多,施工麻烦;上部结构底部轮廓形状复杂,死角多,水气不易排除,构件中钢筋易锈蚀。适用于有较大集中荷载、水位差不大(5m作用)情况;但若设置双层系靠船时,可适用于水位差58m 的港口;当在码头前沿设置多层系靠船结构,或单独设置浮式系靠船设施时,可适用于水位差1017m港口。桁架式 :上部结构由面板、纵梁、桁架和水平连杆组成。优点:上部结构高度大,便于分层系缆;桁架横向刚度大,整体性好
55、;桩的自由长度减小,桩的承载能力增大。缺点:造价高;施工水位低,工期紧;框架与其它构件的连接节点多,构造复杂,施工麻烦;框架处于水位变动区,易受到船舶撞击而破坏,维修困难;预制框架受起重能力限制,应考虑施工条件。适用于水位差较大(10m 左右),需分层系缆的河港码头。但由于其缺点较多,且分层系缆还可以用其它结构型式解决,因此在水位差不大的海岸港、河口港中已逐渐被梁板式码头所代替。无梁板式 :上部结构由面板、桩帽和靠船构件组成。优点:节构简单,构件少,造价低;桩帽施工水位高。缺点:板为点支承,受力不明确(计算方法较特殊,且作了过多的简化,但采用有限元计算,则较精确);板为双向受力,采用双向预应力
56、较困难;桩的自由长度长,桩的承载能力低;面板位置高,靠船构件悬臂长,耐久性差。适用条件:适用于水位差不大,无较大集中荷载或集中荷载较小的中小码头。承台式:上部结构由承台、胸墙和靠船构件组成。优点:结构刚度大,整体性好;对打桩偏位要求不高。缺点:自重大,现浇工作量大;桩台窄,桩多而密,施工麻烦,施工水位低,工期紧。适用于良好持力层不太深,且能打支承桩的地基。3、钢筋砼方桩的构造、桩帽的作用及构造?桩帽的作用:连接上部结构与桩基成整体; 调整打桩偏位和桩顶标高。桩帽构造:取决于基桩的布置形式(单桩或双桩),桩的断面尺寸和打桩偏位,还应满足在它上面的预制构件的搁置长度和接头宽度的要求。平面尺寸:取其
57、顶面和底面尺寸的较大值。 顶面尺寸:按预制梁的宽度、梁或板的搁置长度以及预制构件的安装允许偏差确定。底面尺寸:直桩桩帽应考虑桩径、打桩允许偏差和外包最小宽度等因素;叉桩桩帽尚应考虑斜桩与垂线的夹角和斜桩水平扭角,以及两斜桩轴线在桩帽底面交点的距离等因素。打桩允许偏位:直桩桩帽或叉桩桩帽可只考虑一个打桩允许偏位值。 高度(厚度):应由计算确定,同时应考虑桩伸入桩帽的长度,以及桩顶钢筋或预应力混凝土管桩桩芯钢筋锚固长度的要求。一般桩帽高度不宜小于0.5倍桩帽宽度,且不得小于600mm。4、横梁断面尺寸的确定原则:1、横梁支承要求:前方平台:作成连续梁(受力复杂,整体性要求高);后方平台:可采用简支梁(受力简单,整体性要求不高)。断面型式,有四种(图):矩形:用于纵梁和横梁的底面在同一高程,且高度相差不大;倒T 型:用于纵梁和横梁底标高不一致,纵梁放在横梁上;花篮形:纵、横梁底标高一致,高度相差不大,但面板(空心板)放在横梁上;倒梯形:用于无纵梁,面板直接放
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025写字楼装修合同简单范本
- 2025售楼部购房合同
- 2025劳动合同续签有年限规定
- 2025建设工程中黑白合同的效力怎样认定
- 2025种植草莓土地租用合同
- 2025期房买卖合同范本
- 教育设备招投标合同样本范本
- 招投标项目融资与合同保障
- 皮革制品起重机租赁合同范本
- 农村建筑施工设备租赁合同
- 2024年广东省公务员录用考试《行测》真题及答案解析
- 2024年秋新人教PEP版3年级上册英语教学课件 Unit 4 第4课时 Part B Let's talk
- 2024新版(外研版三起孙有中)三年级英语上册单词带音标
- 期末试卷(试题)-2024-2025学年三年级上册数学苏教版
- 2023年员工手册范本(适用于公司全体员工手册)
- 2025届安徽省合肥市一六八中高二数学第一学期期末经典试题含解析
- 自来水厂考试题库单选题100道及答案解析
- 冷库建设项目可行性研究报告5篇
- 教育学院院长述职报告范文
- 杭州市西湖区2024年三年级数学第一学期期末学业质量监测试题含解析
- 2022-2023学年广东省广州市花都区六年级(上)期末英语试卷(含答案)
评论
0/150
提交评论