气凝胶原理及市场_第1页
气凝胶原理及市场_第2页
气凝胶原理及市场_第3页
气凝胶原理及市场_第4页
气凝胶原理及市场_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx气凝胶原理及市场【精品文档】 气凝胶市场调研报告一、概述 二氧化硅气凝胶是一种合成的无定形硅胶,与结晶硅胶显著不同。硅胶分子由一个硅原子和两个氧原子构成。如下图所示,硅胶有两种基本形式:无定形硅胶和结晶硅胶。如果硅胶分子排列整齐并且形成可重复样式,则为结晶硅胶。如果硅胶分子排列不整齐,则为无定形硅胶。 两种不同气凝胶产品的扫描电子显微镜(SEM)图像显示,气凝胶存在无定形特性。粉末X光衍射没有发现可测量的结晶成分。在超过1200(显著高于气凝胶材料的最高使用温度)时,气凝胶会转换为结晶相。 二氧化硅气凝胶又被称作“蓝烟”、“固体烟”,是目前已知的最轻的固体材料,也是

2、迄今为止保温性能最好的材料。因其具有纳米多孔结构(1100nm)、低密度(3250kg/m3)、低介电常数()、低导热系数(0.0130.025W/(m·k))、高孔隙率(8099.8%)、高比表面积(5001000m2/g)等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、石油、化工、矿产、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用价值,被称为“改变世界的神奇材料”。 气凝胶于1931年在美国发明。目前气凝胶全球重点发展区域主要集中在美国、德国、英国,其中,依托强大的技术开发实力和新产品开发力度,美国的应用领域尤为突出和领先。在高性能气凝胶应用方

3、面,美国已经成功应用于航空航天、新能源、建筑以及高级体育用品等方面。我国在气凝胶研究和开发方面尚属早期阶段,主要集中在附加值较高的航空航天、医药等方面,众多领域仍属空白。目前国际上关于气凝胶材料的研究工作主要集中在德国的维尔茨堡大学、BASF公司、美国的劳伦兹·利物莫尔国家实验室、桑迪亚国家实验室,法国的蒙彼利埃材料研究中心,日本高能物理国家实验室,美国阿斯彭气凝胶技术有限公司等。国内主要集中在同济大学波尔固体物理实验室、浙江省绍兴市纳诺高科股份有限公司、广东埃力生高新科技有限公司、上海美桥科材料科技有限公司等。 二、基本特性 1、热学特性及其应用 热学特性 气凝胶的纳米多孔结构使它

4、具有极佳的绝热性能,其热导率甚至比空气还要低,空气在常温真空状态下的热导率为0.026W/(m·k),而气凝胶在常温常压下的热导率一般小于0.020W/(m·k),在抽真空的状态下,热导率可低至0.004W/(m·k)。 气凝胶之所以具有如此良好的绝热特性与它的高孔隙率有关。热量的传导主要通过三种途径来进行,气体传导,固体传导,辐射传导。在这三种方式中,通过气体传导的热量是很小的,因此大部分气体都具有非常低的热导率。常用的绝热材料都是多孔结构,其正是利用了空气占据了固体材料的一部分体积,从而降低了材料整体的热导率。气凝胶的孔隙率比普通绝热材料要大得多,其95%以上

5、都是由空气构成,决定了其将具有与空气一样低的热导率。而且气凝胶中包含大量孔径小于70nm的孔,70nm是空气中主要成分氮气和氧气的自由程(气体分子两次碰撞之间的时间内经过的路程的统计平均值),因此意味着空气在气凝胶中将无法实现对流,使得气态热导率进一步降低。气凝胶中含量极少的固体骨架也是由纳米颗粒组成,其接触面积非常小,使得气凝胶同样具有极小的固态热导率。气凝胶的热辐射传导主要为发生在3-5m区域内的红外热辐射,其在常温下能够有效的阻挡红外热辐射,但随着温度的升高,红外热辐射透过性增强。为了进一步降低高温红外热辐射,通常向气凝胶中加入遮光剂,如碳黑、二氧化钛等,遮光剂的使用能够大大降低高温下的

6、红外热辐射。 应用 SiO2气凝胶作为一种纳米孔超级绝热材料,除具有极低的热导率之外还具有超轻质以及高热稳定性的特性,它在工业、民用、建筑、航天及军事等领域具有非常广泛的应用。 传统工业领域 如石化行业、化工行业、冶金行业等等,管道、炉窑及其它热工设备普遍存在,用气凝胶隔热材料替代传统的保温材料,节能效果明显。 太阳能利用 具有高度透光率及低热导率的气凝胶对入射光几乎没有反射损失,能有效地透过太阳光,因此气凝胶特别适合于用作太阳能集热器及其它集热装置的保温隔热材料,当太阳光透过气凝胶进入集热器内部,内部系统将太阳光的光能转化为热能,气凝胶又能有效阻止热量流失。 节能建筑 由于气凝胶既具有绝热特

7、性,又具有吸声特性,且具有透光性,因此可以将气凝胶夹在双层玻璃之间制成夹芯玻璃,其绝热效果比普通的双层玻璃高几倍,且具有降噪效果。将这种玻璃用于房屋的窗户,可以大大降低热量流失,有明显的节约能源的作用,以气凝胶为夹层的窗玻璃的热损失率比目前最好的窗系(氢气充填并用低发射率的铟氧化物或银作涂层)还要减少三分之二。如果将气凝胶玻璃用于高层建筑取代一般幕墙玻璃,将大大减轻建筑物自重,并能起到防火作用。 航空航天 与传统隔热材料相比,SiO2气凝胶隔热材料可以用更轻的质量、更小的体积达到更好的隔热效果,这一特点在航空、航天应用领域具有极大的优势。 气凝胶可以作为飞机上使用的隔热消音材料。据报道,航天飞

8、机及宇宙飞船在重返大气层时要经历数千摄氏度的白炽高温,保护其安全重回地球的绝热材料正是SiO2气凝胶。美国NASA在“火星流浪者”的设计中,使用了SiO2气凝胶作为保温层,用来抵挡火星夜晚的超低温。 军事领域 SiO2气凝胶可作为飞机机舱的隔热层材料。可以作为核潜艇、蒸汽动力导弹驱逐舰的核反应堆、蒸发器、锅炉以及复杂的高温蒸汽管路系统的高效隔热材料,可以增强隔热效果,降低舱内温度,同时有效降低隔热材料的用量,增大舱内的使用空间,有效改善各种工作环境。 家电 用块状、颗粒状或粉末状的气凝胶取代氟里昂发制的聚氨酯泡沫作为冰箱等低温系统的隔热材料,可以防止氟里昂气体泄漏破坏大气臭氧层,从而保护人类的

9、生存环境。 服装 将气凝胶作为冬季保暖服装的衬料可以使服装既轻质又保暖。 2、声学特性及其应用 声学特性 吸声材料要求材料内部充满孔隙,并且孔隙是互相连通且与表面相通的。当声波入射到材料表面时,一部分在材料表面被反射,另一部分则透入到材料内部向前传播。声波在传播过程中,其产生的振动引起小孔或间隙内的空气运动,造成和孔壁的摩擦,紧靠孔壁和纤维表面的空气受孔壁的影响不易流动,由于摩擦和粘滞力的作用,使相当一部分声能转化为热能。 气凝胶内部充满了两端开放并与表面相通的纳米孔,其高达1000m2/g的比表面积说明了其中包含孔的数量之多,因此声音在其中传播时,声能将被其大量存在的孔壁大大消耗,这使得气凝

10、胶具有比普通多孔材料高数十倍的吸声效果。另外气凝胶热稳定性非常好,耐腐蚀,且经过表面处理的气凝胶疏水,这使其在极端高温及恶劣腐蚀环境下仍具有良好的吸声性能。目前使用的普通吸声材料如玻璃棉、矿物棉、岩棉等,吸声效率不高,且性能不稳定。气凝胶作为一种新型吸声材料,不但吸声效果更好,且超轻质,无污染,它的用途将非常广泛,尤其在航空航天方面由于其轻质的特点,将成为吸声材料的首选。此外,还可将气凝胶材料用做建筑的吸声材料,有优良的隔音效果。 应用 由于气凝胶的密度可以通过改变制备条件对其进行控制,因此使得声阻亦可调。这一特性使得气凝胶可作为声阻耦合材料,如作为压电陶瓷与空气的声阻耦合材料。压电陶瓷具有极

11、高的声阻,空气则具有极低的声阻,阻抗在二者之间某个值的材料能够匹配声学阻抗。用SiO2气凝胶耦合高声阻的压电陶瓷和低声阻的空气,Krauss等报道这一耦合结果使声强提高。 水声反声材料是指声波由水中入射到材料层上能无损耗地全部反射出去的材料。在潜艇上构成声纳设备声学系统的材料中,水声反声材料是非常重要的,它可以使声纳单方向工作,消除非探测方向来的假目标信号的干扰,同时隔离装备体自身噪声,提高声纳的信噪比和增益。特性阻抗与水的特性阻抗严重失配的材料可用作水声反声材料。常压下空气的密度和声速都远远小于水的密度和声速,空气的特性阻抗将比水小得多,与水阻抗失配严重,因此含有大量空气的材料可作为常压水中

12、的反声材料。气凝胶高孔隙率且超轻质的特点使其成为最佳的水声反声材料,既具有良好的水声反声效果,又不增加潜艇的重量。 3、催化特性及其应用 催化特性 超微粒子特定的表面结构有利于活性组分的分散,从而可以对许多催化过程产生显著的影响。气凝胶是一种由纳米粒子组成的固体材料,具有小粒径、高比表面积和低密度等特点,这些特点使气凝胶催化剂的活性和选择性均远远高于常规催化剂,而且活性组分可以非常均匀地分散于载体中,同时它还具有优良的热稳定性,可以有效的减少副反应发生。因此气凝胶作为催化剂,其活性、选择性和寿命都可以得到大幅度地提高,具有非常良好的催化特性。 应用 1938年,Kearby 等发现在醇向胺的转

13、化过程中,Cr2O3Al2O3复合氧化物气凝胶是一种性能良好的催化剂。1974年,Gardes 等制备了NiO/Al2O3 气凝胶催化剂并把它应用于乙苯脱乙基制苯,具有非常良好的效果。初期气凝胶催化剂主要用于一些有工业应用背景的有机反应,如乙酸转化为丙酮、丙酸转化为二乙基丙酮等反应,近年来已经发现了气凝胶更多的催化特性。 4、吸附特性及应用 由于气凝胶由纳米颗粒骨架构成,具有高通透性的三维纳米网络结构,拥有很高的比表面积(6001200 m2/g) 和孔隙率(高达90 %以上),且孔洞又与外界相通,因此它具有非常良好的吸附特性,在气体过滤器、吸附介质方面有着很大的应用价值。 对比疏水SiO2气

14、凝胶、活性炭纤维以及活性炭颗粒对吸附介质为苯、甲苯、四氯化碳、乙醛的吸附性能测试结果,比较发现,SiO2气凝胶的吸附性能较活性炭纤维(ACF) 和活性炭颗粒(GAC) 更为优越。而且通过改性制备出的疏水SiO2气凝胶,可以避免亲水型活性炭在潮湿环境下吸附性能大幅降低。同时若将SiO2气凝胶进行第一次吸附脱附后,再次进行吸附研究,SiO2气凝胶可方便地经由热气流脱附,再吸附容量基本不变,这就为循环利用创造了有利的条件。 5、光学特性及应用 纯净的SiO2气凝胶是透明无色的,它的折射率()非常接近于空气的折射率,这意味着SiO2气凝胶对入射光几乎没有反射损失,能有效地透过太阳光。因此,SiO2气凝

15、胶能够被用来制作绝热降噪玻璃。利用不同密度的SiO2气凝胶膜对不同波长的光制备光耦合材料,可以得到高级的光增透膜。 当通过控制制备条件获得不同密度的SiO2气凝胶时,它的折射率可在范围内变化,因此SiO2气凝胶可作为切仑科夫探测器中的介质材料,用来探测高能粒子的质量和能量。 6、电学特性及应用 气凝胶具有低介电常数(1<e<2),而且可通过改变其密度调节介电常数值。随着微电子工业的迅速发展,对集成电路运算速度的要求越来越高。一般而言,所用衬底材料的介电常数越低,则运算速度越快。现在集成电路所用的衬底材料为Al2O3,其介电常数为10,目前的趋势是使用聚酰亚胺或其它高聚物介电材料替代

16、Al2O3,然而,高聚物的热膨胀系数较高,容易引起应力以及变形。气凝胶具有一些更优越的特性,其介电常数值很低且可以调节,其热膨胀系数与硅材料相近因此应力很小,而且相对聚酰亚胺它有良好的高温稳定性。因此如将集成电路所用的衬底材料改成气凝胶薄膜,其运算速度可提高3倍。三、制备工艺 目前SiO2气凝胶的制备由两个过程构成:溶胶凝胶过程和醇凝胶的干燥工艺。 【精品文档】以正硅酸乙酯为原料超临界法制备二氧化硅气凝胶制备流程:老化超临界干燥改性处理溶剂置换溶剂置换湿凝胶正硅酸乙酯无水乙醇去离子水催化剂气凝胶1、溶胶凝胶工艺 目前溶胶凝胶工艺常使用的前驱体采用最多的是TMOS(硅酸甲酯)、水玻璃和TEOS(

17、正硅酸乙酯)。由于TMOS有毒和水玻璃制备出的SiO2气凝胶纯净化困难,因此使用最多的是TEOS。溶胶凝胶工艺是向先驱体加入适量水和催化剂,发生水解缩聚反应: Si(OR)4+4H20 Si(OH)4+HOR (水解) nSi(OH)4 (SiO2)n+2nH2O (缩聚) 生成以SiOSi为主体的聚合物,再经过老化阶段后,形成网络结构的凝胶。在凝胶形成的过程中,部分水解的有机硅发生缩聚反应,缩聚的硅氧链上未水解的基团可继续水解。通过调节反应溶液的酸碱度,控制水解缩聚过程中水解反应和缩聚反应的相对速率,可控制得到凝胶的结构。在酸性条件下(pH=25),水解速率较快,体系中存在大量硅酸单体,有利

18、于成核反应,因而形成较多的核,但尺寸都较小,最终将形成弱交联度、低密度网络的凝胶;在碱性条件下,缩聚反应速率较快,硅酸单体一经生成即迅速缩聚,因而体系中单体浓度相对较低,不利于成核反应,而利于核的长大及交联,易形成致密的胶体颗粒,最终得到颗粒聚集形成胶粒状的凝胶。强碱性或高温条件下SiO键形成的可逆性增加,即二氧化硅的溶解度增大,使最终凝胶结构受热力学控制,在表面张力作用下形成由表面光滑的微球构成的胶粒聚集体。 2、干燥技术 前驱体经过溶胶凝胶过程而获得的醇凝胶,由富有弹性的固体网络和网络中的液体组成,要得到气凝胶,必须在保持原有的凝胶网络结构不变的情况下,将网络中的溶剂排除。而如果直接进行干

19、燥排除,由于表面张力的作用只能得到固体粉末,而不能得到块状的不开裂的气凝胶材料。为了解决这一难题,最早采用的是超临界干燥方法。近年来随着许多科学家的长期探索,相继出现了亚临界干燥、冷冻干燥、“微分”干燥和常压干燥技术等。 凝胶的表面存在纳米结构的气孔,根据干燥机理可知排除溶剂时将产生很大毛细管力,这可能导致凝胶结构的坍塌。因此如何尽可能地消除毛细管力,改进制备干燥方法成为气凝胶基础研究的一个重要部分。 3、超临界干燥技术 超临界干燥是把干燥介质加热到超临界点,使凝胶排除溶剂时不存在毛细管力,避免排除溶剂时引起凝胶结构的坍塌,得到保持凝胶原始性状的一种干燥技术。 采用溶胶凝胶过程得到的醇凝胶的固

20、态骨架周围,存在着大量溶剂(醇、少量水和催化剂)。要得到气凝胶,必须设法除去凝胶中存在的溶剂。采用超临界干燥技术,采用甲醇、乙醇、异丙醇、苯等作为干燥介质,在超临界点以上排除溶剂的超临界工艺,需要高温高压的苛刻条件(表1),设备复杂且危险性大。因此为了尽可能的减小干燥过程中存在的危险,近年来发展出了低温超临界干燥技术。CO2不会燃烧、爆炸,对环境不会产生污染,并且其化学惰性使制备的产品的纯度非常高,因此发展出了以CO2作为干燥介质(临界温度只有31)的低温超临界干燥技术,降低干燥时的临界压力和温度,减小了存在的危险,实现凝胶的干燥。Van Bommel等采用低温超临界干燥法成功制备了SiO2气

21、凝胶。 14、常压干燥技术 超临界干燥技术耗能高且危险性大,设备复杂、难以实现连续性及规模化生产。与超临界干燥相比,常压干燥技术所需设备简单、便宜,且只要技术成熟,就能进行连续性和规模化生产。因此常压干燥技术是气凝胶干燥技术的发展方向。 在常压下通过加入低表面张力的介质和表面改性剂,替换凝胶中的溶剂,增强凝胶网络的结构,同时减小了凝胶网络的毛细管力,尽可能避免溶剂排出时凝胶发生坍塌的现象,实现了气凝胶的常压干燥。 由干燥机理可知,气凝胶的非超临界干燥制备,可以通过以下几种措施来实现,即增强凝胶网络骨架的强度,改善凝胶中孔洞的均匀性,凝胶的表面修饰以及减小溶剂的表面张力等。凝胶干燥过程中,毛细管

22、附加压力与毛细管中溶剂的表面张力直接相关。通常,经水解和缩聚形成的醇凝胶,其网络孔洞中充满的溶剂主要是水和醇,由于水的表面张力很大,因此在干燥过程中毛细管的附加压力很大,这是造成气凝胶制备过程中开裂破碎的直接原因。如果通过溶剂替换,用表面张力小的溶剂将水和醇替换出来,这些表面张力小的溶剂蒸发干燥时,附加压力将大大减小,对实现非超临界干燥制备气凝胶很有利。因此,可以用具有极低的表面张力表面活性剂溶液进行替换,减小毛细孔中的附加压力。表2列出了常用表面改性剂的表面张力参数。其次,通过在介观层次上引入各种受控源物质,以及对醇凝胶形成条件的严格筛选,实现材料配比和制备工艺的优化,从而改善凝胶网络骨架密

23、度,提高网络骨架强度,增加骨架的柔韧性。只要凝胶的网络结构比较完整,且有足够的强度和弹性,足以抵御在干燥过程中毛细管附加压力对凝胶的破坏作用,实现SiO2气凝胶的干燥。 5、冷冻干燥 超临界干燥是在高温高压条件下消除了液/气界面,消除毛细管力的影响。而冷冻干燥与其相反,是在低温低压下把液/气界面转化为气/固界面,固与气转化避免了在孔内形成弯曲液面,再使溶剂升华,消除了毛细管力的影响,实现凝胶干燥。 80年代末,Klvana等提出用冷冻法干燥气凝胶材料,随后Mathieu等用此法合成了具有良好粘附力、多孔的冷冻凝胶,Pajonk等2则详细综述了冷冻凝胶的催化作用效果。然而在形成具有纳米结构的气凝

24、胶时也存在一些问题:在冷冻过程中,流体溶剂被冷冻,随着结晶度和压力的增加,网络结构会被破坏;用乙醇作为溶剂时,温度太低也是一个技术问题(乙醇冷冻温度160K,冷冻超小的纳米气孔的材料,过冷是冷冻流体的必备因素);当溶剂被冷冻时,必须减少压力从而使其升华;当溶剂被排出以后,纯度很高,但是由于在低温,蒸汽压力太小以至于压力梯度不能达到高的流动性,使溶剂挥发占据大量的时间。 冷冻干燥是一种新型的气凝胶干燥技术。如果在流体的溶点,通过冷气体对流,凝胶的表面温度比较稳定,表面得到强化,就可有效地避免干燥时纳米气孔结构的坍塌。 6、传导干燥 Smith报道了将凝胶浸入一种不能进入凝胶结构的溶剂中加热,进行

25、干燥的新型工艺,这就是传导干燥。传导干燥通过控制外部流体的温度调控加热的速率,凝胶干燥时它的密度降低,到了干燥后期,甚至能漂浮到流体的表面。根据Smith小组的研究,传导干燥与传统的干燥方法相比,虽然热传导速率快,能量利用效率高,但是难以选择合适的加热液体,且这种技术需要在加热以前,对凝胶的表面要经过化学处理,因此目前利用这种方法制备气凝胶材料的研究较少。 7、蒸发干燥 如果要在中等的价位制备出大量的SiO2气凝胶,蒸发干燥技术是非常合适的。然而蒸 发干燥很不成熟,利用它制得的材料一般还限于SiO2干凝胶。 四、主要产品 1、气凝胶复合隔热毡气凝胶复合隔热毡是一种柔性、无机环保、高效保温、易于

26、施工的隔热毡,该材料是将纳米气凝胶与无机纤维结合在一起,专用于高温各类工业管道、罐体及其他弧面设备的保温隔热。 主要优点 优异的隔热效果 导热系数为0.018W/(m·k)(25时),隔热效果是传统隔热材料2-5倍,且寿命更长。下图为气凝胶隔热毡与传统的岩棉,硅酸钙,膨胀珍珠岩在相同的条件下的对比图,从图中可以看出气凝胶毡在最薄的厚度条件下就能达到与其他传统材料相同的隔热效果 憎水性和防火性 材料整体憎水,可有效防止水分进入管道、设备内部,同时具有A1级防火性能。 减少保温层厚度 取得同等隔热效果,厚度仅为传统材料的几分之一。 施工方便 密度为220kg/m3,质轻,容易裁剪、缝制以

27、适应各种不同形状的管道、设备保温,且安装所需时间及人力更少。 节省运输费用 更少的包裹体积及更轻的重量可大大降低保温材料的运输成本。 应用领域 预制保温管 储罐,容器等设备保温 石油开采蒸汽管线 热电厂、石化厂、化工厂管线 各类高、低温炉体,移动救生舱 高速列车、汽车、地铁等车体保温 建筑领域保温 2、气凝胶复合隔热板 气凝胶复合隔热板是一种纳米刚性保温板,将纳米气凝胶与无机纤维结合在一起,可用于建筑、机器、设备及其他领域。其具有极低导热率,节能环保,使用方便及憎水效果优异等特点。 主要优点 优异的隔热效果 导热系数为0.019W/(m·k)(25摄氏度时),隔热效果是传统隔热材料2

28、-5倍,且寿命更长。 憎水性和可透气性 可防止水分进入设备表面,但可以透过蒸汽。 操作简易 密度为320kg/m3,质轻,容易裁剪成各种形状以适应不同的保温需求,安装所需时间及人力更少。 节省运输费用 更小的包装体积可大大降低物流成本。 减少厚度 同等的隔热效果,厚度仅为传统材料的几分之一。 无机环保 材料整体为无机组成,废弃料可填埋处理。 应用领域 各类高、低温工业炉体 可移动式救生舱 特殊军事设备 特殊形状保温壳体 建筑用一体化保温板 5、 气凝胶1、技术参数体积密度40150kg/m3 粒径范围0.55mm 比表面积500650m2/g 孔隙率 >90% 孔径 20100nm 憎水

29、性 憎水和亲水两类 被称为冷烟、固体烟、固体空气或者蓝烟的气凝胶是目前已知固体物质中最轻并且性能最好的隔热材料,其体积的90%以上都是极微小的纳米孔洞,其余部分由三维纳米网状孔壁构成。 主要优点 无可比拟的隔热效果 出色的光线分散性 良好的物理稳定性 可改善声学性能 高孔隙率,高比表面积 纳米级孔隙,极低的密度 应用领域 极低的热导率制作高性能纳米隔热材料 独特的纳米结构制作新型气体过滤材料 高比表面积制作超级储能材料或催化剂载体 声阻抗可变范围较大可用于制作超声探测器的声阻耦合材料2、气凝胶绝热粉体 该系列产品以纳米二氧化硅气凝胶为主体材料,通过独有的特殊工艺复合而成。具有耐高温、导热系数低

30、、密度小、强度高、绿色环保、防水不燃等优越性能,同时兼具优越的隔声减震性能,是冶金、化工、国防、航空航天等领域不可或缺的高效隔热保温材料。 主要性能指标 型号 QF SF 比表面积(m2/g) 600 600 密度(kg/m3) 40-200 40-200 气孔率(%) 90-98 90-98 孔径(nm) 25-45 25-45 孔容积(cm2/g) 3.0-3.6 3.0-3.6 亲水性 亲水 疏水 使用范围 保温绝热、空气净化、水处理等功能结构夹层、填充层、复合层,或与其他材料复合、粘结使用。 3、气凝胶绝热颗粒 该系列产品密度低,比表面大,孔隙率高,透光度好,外观为淡蓝色透明颗粒状,具

31、有导热系数低、隔热保温性能好、吸附性能强、绿色环保、无毒、阻燃、无腐蚀、防水等优越性能,不含任何对人体有害的物质,可广泛应用于采光保温设备结构夹层、填充层、复合层等领域。 主要性能指标 4、绝热采光板 该系列产品以半透明纳米二氧化硅气凝胶颗粒、薄膜或板材为主体夹层材料,与优质玻璃钢材料复合制成。具有透光、隔热、绿色环保、防水不燃等优越性能,应用领域广,施工方便,为大型剧院、展览中心、会议中心、特殊试验中心、高级宾馆、别墅、太阳能集热器等提供透明隔热的高级绝热保温产品。 主要特点 1. 有较高的透光度,可有效利用太阳光,节省照明用电; 2. 导热系数低、隔热性能优良; 3. 绿色环保、无毒、阻燃

32、、无腐蚀; 4. 抗压、抗震性能良好; 5. 安全、轻质、易施工、美观。 主要性能指标六、应用领域 1、工业领域 石油开采、石油炼化、热电厂管线保温 该类型管线主要针对的是100-500度的高温管线。目前该类管线的保温大都存在保温材料寿命短,需经常维护、更换的问题;传统硅酸盐类保温材料结构力差,容易出现上薄下厚的现象,使得管线容易出现热缝,从而带来严重的热损失;大多传统的无机材料都没有防水效果,容易造成管线腐蚀,使得管线无法保证设计压力要求;管线因保温效果下降,使得内部流体在末端已经无法达到设计的温度及压力要求,并导致锅炉的负荷增加,运营成本增加。 采用气凝胶隔热材料的优势 相对传统保温材料气

33、凝胶毡可以大幅降低保温层厚度,减小热损失,节能效果优异; 气凝胶隔热材料结构力好,抗压强度高,性能稳定,使用周期长; 气凝胶隔热材料具有良好的防水效果,在最大程度上防止管线腐蚀; 减少安装时间和人工,易于根据复杂的形状、弯曲度和空间限制等来裁剪材料和安装; 气凝胶保温材料用量少,可以减少外保护层用量,降低运输及储存成本; 气凝胶与其他传统材料复合使用,为使用方带来了更加经济的保温方案。2、炉体隔热保温 气凝胶保温材料可以广泛应用于蒸汽锅炉、高温熔融炉、高温煅烧炉、垃圾焚烧炉、马弗炉、导热油炉、石化厂分馏塔等等各种不同种类、不同温度点的炉体。综合来看这些炉体大都是存在以下问题:保温层厚度太厚,导

34、致锅炉体积庞大,而有效使用空间小;隔热层的致密性不够好,很难阻挡热气流;保温后的表面温度及热损等方面达不到使用要求等。这些炉体大都使用硅酸铝棉、岩棉、玻璃棉等无机类保温材料,这些材料在500时导热系数大都已经高于0.15W/(m·K) ,隔热性能较差。 采用气凝胶材料的优势 气凝胶材料在高温下的隔热效果相对传统材料会更加明显,可大大减低热损失,500导热系数只有0.035 W/(m·K); 有效降低保温层厚度,从而扩大内部使用空间; 无论气凝胶板还是气凝胶毡多层错缝使用后都可以起到很好的阻挡热气流的效果; 采用气凝胶材料可以为锅炉的温控性大大提高; 更好的改善锅炉周边环境的

35、舒适与安全性。 3、LNG及其它低温管线保冷 低温、超低温管道涉及到的温度大都在-40至-170摄氏度。在LNG工程及其他低温项目建设中,最常用的深冷保冷材料主要有PUR/PIR(聚氨酯硬泡),发泡玻璃,橡塑,改性酚醛泡沫等,这些材料较之于先前使用的珍珠岩材料,无论从性能还是施工方面看,都有了很大的改善。气凝胶保冷材料的出现,对于现有的深冷保冷体系更加是一个质的改变。 该领域面临的问题 传统材料保温性能衰减很快,导致维护成本很高; 传统材料保冷效果差,冷损失大,容易给天然气或其他压缩气体的储藏运输带来危险; 传统材料包裹厚度大,给密集型管线排布设计带来诸多不便; 管道由于保冷层的效果差而很容易

36、被结露的水腐蚀; 保冷层很容易因结露水太多而失去效果; 有机类材料防水性较好但无法满足防火要求。 采用气凝胶材料的优势 保冷效果优异,超低温时热导率<0.01W/(m·k),所需保冷层厚度大大减小,有效降低冷损失,为密集型管线排布设计提供优化方案; 气凝胶材料在低温下防水性能好,有效抑制水渗入金属管线表面,防止管线腐蚀,防止保温材料因渗水而导致保温效果下降; 材料为无机材料,不含胶黏剂,性能稳定,安全防火,使用寿命更长; 材料切割、施工方便,维护成本低。 4、预制保温管 寒冷地区的城镇居民日常生活需要供暖系统,该系统通过预制管道从热电厂搜集热气并输送至家庭。为了减少对城市交通和

37、规划的影响,供暖系统通常安装于地下,因此大量的预制保温管道也埋于地下。类似的,预制保温管道也广泛用于海洋石油开采。这样的预制保温管道需要良好的保温材料,以防在长途输送过程中的热损失和石油凝结。 目前传统预制保温管存在的问题 生产制作及施工安装复杂,施工成本较高; 单支重量大体积大,从而导致运输成本高,管道铺设时开挖土方数大; 保温层厚度大导致外侧钢管用量大,因而存在浪费钢材问题; 采用的保温棉结构松散,疏水性差,长时间使用容易出现下榻现象,从而增大热损失影响保温效果; 在海底石油开采使用的传统保温材料因包裹厚度大,导致体积增大浮力增大,大都需要额外增加配重才可以正常使用。 采用气凝胶材料的优势

38、 气凝胶毡隔热性能是传统保温材料的38倍,达到同等隔热效果,所需隔热层厚度仅为传统材料的几分之一,可大幅度降低外侧钢管用量,降低热能损耗,降低管道直埋占用空间,有利于城市建设规划或其他设计要求; 气凝胶材料为无机组成,具有优良的抗压及抗拉强度,防火性能为A1级,材料整体憎水,是目前蒸汽管网的首选材料; 对比传统材料,不会出现因管道振动或渗水而出现整体下塌变形,不会出现上薄下厚等现象,从而更加保证对管线保温的稳定性; 在正常条件下,可持续使用2030年; 更薄的隔热层,大大降低运输及安装施工成本。 单一使用气凝胶毡方案 气凝胶和玻纤复合使用方案 5、建筑领域 (1)建筑内墙领域应用 气凝胶隔热材

39、料凭借极低的导热系数,有效切断建筑物与外界的传热途径。该材料具有热阻高、传热系数低、高效防火、大幅降低保温层厚度,使用寿命长等优点。该材料可以结合相关的应用方案应用在建筑内墙区域,而且该材料无机环保,是建筑保温应用的最佳选择。主要性能优势 无机组成为建筑物提供防火、保温双重保障; A1级防火导热系数低至0.018 W/(m·k),高温灼烧下不释放任何有害物质; 隔热保温性能优越,大幅降低取暖和制冷能耗; 隔音性能好,有效阻隔外界噪音; 材料整体憎水,施工方便,使用寿命长。 (2)屋顶保温隔热 在建筑物中约有15%-20%的热量是由屋顶散失,而屋顶也是使房屋内部升温的主要热源通道之一。

40、故对楼顶面进行有效的保温隔热处理,避免冷凝结霜,营造一个温暖舒适的环境就显得尤为重要。同时,防止水汽对楼顶面的渗透、侵蚀也十分重要。 气凝胶建筑用隔热型材凭借其优越的隔热性能,整体疏水,稳定的化学、物理性能以及柔韧性好,能满足修长及狭小空间隔热施工等特性在此领域突显了其实用性。 主要性能优势 极低的导热系数:隔热保温性能优越,大大降低了隔热层的厚度同时能满足(特别是太阳能屋顶等的)狭小空间的隔热; 节能高效:降低取暖和制冷的能耗; 耐火焰烧穿:提高房屋防火等级,延长有效逃生时间; 整体疏水:增强楼面抗渗透能力,隔绝也太水,减少潮湿地气对楼地面的侵蚀; 低密度,轻质量:减轻楼顶的自重,降低施工难

41、度; 操作方便:降低施工成本,同时能满足修长部位的施工要求。 (3)房屋地板隔热 地板是房屋和地面直接接触的部分,室内与地面可以通过固体导热进行很好的热交换,同时地面的湿气也会渗透到室内,从而影响人们的正常生活。此外,置于地面的家具等物品给地下保温层施加了很大的压力,使得传统的材料隔热性能被大打折扣。同时,当发生水汽渗透到隔热层的情况时,不具备疏水性的传统材料吸潮后就成为细菌等滋生的温床。 使用整体疏水性气凝胶建筑用隔热型材,抗压能力强,重压下隔热性能不衰退,同时增强防水层阻隔水汽通过的能力,尤其适合温湿暖气候地区使用,且隔热层不会滋生细菌。 主要性能优势 持效保温:隔离地面凉气,有利于保持室

42、内温度; 长期防潮:隔绝地坪潮气,有益健康,保护地板,防止蠕变; 无机组成:不滋生细菌; 舒适踏感:踩踏地板有轻微的柔感,舒适自然;吸收重物落地冲击力,保护地板,减轻落物损伤; 宁静隔音:隔绝地板震音,增强房间私密性; 性能稳定:使用寿命长久; 施工方便:置于防水层之上,外加覆盖层即可。 6、设备设施 (1)压铸熔炉领域 电磁感应加热的产品及解决方案目前已经广泛应用于冶金、化工、模具制造、塑胶机械、食品加工等行业。它的应用对于全球节能减排事业的可持续性和稳健发展起到了非常大的推动作用。由于线圈至坩埚、模具等都有最大半径距离限制,并且设备温度高和线圈耐温低等问题,导致电磁加热设备的制造商必须使用

43、好的隔热保温材料。 该行业面临的问题 800摄氏度的电磁感应加热炉一般要求保温层的厚度为30-35mm,传统材料无法在这个厚度内把温度降到线圈的安全使用范围; 通过空气层隔热又没有任何保温效果,致使热能浪费; 传统材料抗压、抗拉强度低,对于很多复杂的包裹方式很难满足; 传统材料结构松散一般无法二次使用。 采用气凝胶的优势 气凝胶材料是目前常见保温棉中隔热性能最好的,可以为炉体提供更好的保温隔热方案; 大幅降低炉体外表面温度、改善工作环境; 以最薄的保温厚度,达到更好的保温效果; 加快炉内升温速度、降低热量损失,提高温控准确性、缩短生产时间、延长坩埚使用寿命。 (2)救生舱隔热保温 救生舱是当矿

44、难发生时可为井下遇险矿工提供避难空间的舱室。在矿井事故发生后,极有可能对巷道、井下设备、水、电管线造成严重损坏,造成井下停风断电的状况,使得救生舱在救援过程中处于长时间的高温烟气环境中。因此,为保障救生舱内避难人员的安全,提高救生舱的高温防护能力和结构力就显得尤为重要。根据国际普遍的矿井救护队在矿井事故救援过程中的经验,煤矿井下的灾变环境温度可能长时间处于50摄氏度,因此,应用于我国煤矿井下的救生舱温度防护指标至少应为55摄氏度,在外界环境温度持续保持在55摄氏度的条件下,救生舱必须依靠自身结构和设备将舱内温度控制在35摄氏度以下。作为优秀的隔热材料,气凝胶保温隔热材料已经流行于矿用救生舱隔热

45、层,可以提高救生舱的防火性能和温度控制性能,增加救生舱的有效空间,节约能源的消耗。现状及缺点 密度大、质量重、导热率高,而无法满足救生舱移动方便和有效阻隔热传导的要求; 岩棉和玻璃棉使用温度只能限定在550摄氏度以内,因此在灾害现场的高温条件下会严重收缩,从而损坏本体结构。 采用气凝胶的优势 导热系数低,可扩大内部空间或降低保温层厚度,降低热损,尤其适用于高温环境; 气凝胶独有的三维网络结构可以承受长期高温或振动,避免产生烧结变形、颗粒堆积、保温性能急剧下降的现象; 有较好的柔性与抗拉强度,可抵抗施工时的拉伸和高低温交替时线性收缩带来的内应力; 产品由无机材料组成,不含对人体有害的物质。可溶出

46、氯离子含量极小,对设备和管道无腐蚀; 气凝胶对设备进行保温的同时,还可以起到吸声降噪、缓冲震动等功能,提高环境质量,保护设备; 施工方便快速。 (3)汽车发动机及排气管隔热 一般汽车在连续运行过程中,都会在尾部发动机及排气管部位产生大量的热量,上升的热量使发动机及排气管部位的温度升高,因此对发动机及排气管而言隔热十分重要。 对隔热材料的要求 发动机及排气管一般温度在350度左右,因此要求隔热材料可耐受这样的温度; 一般车身较为紧凑,因此要求保温层必须要薄; 隔热材料的使用寿命要长。 采用气凝胶的优势 610mm的气凝胶毡基本可以满足要求; 施工方便,可以任意切割及弯曲; 适用于高温环境,且使用

47、寿命长。(4)日用品领域保温 气凝胶复合材料以其绝佳的保温性能广泛应用在睡袋,登山鞋,耐寒帐篷,防护服等日用品上,相对于其他的材料来说具有最高的保温性能,而且更少的厚度和重量使其可以具有更多的潮流与设计的方案,优越的灵活性能和疏水性,在受压时仍具有很好的保温性能。目前来说气凝胶在日用品市场上主要应用在鞋垫、高山靴保暖层、睡垫等等,服装、睡袋等装备上的应用相对较少。应用优势 厚度薄,柔韧性好,穿着舒适; 在户外的大多数苛刻的环境下,气凝胶复合材料的坚韧性都能达到理想的水平; 在常规的洗刷和干燥的循环下,仍然具有其该有的性能; 轻薄的形态使其可以具有更多的潮流与设计的方案; 绝缘保温,为用户使用提

48、供安全防护,提高产品保温性能; 发热性能稳定,温度控制准确,发热时间持久,稳定。 七、应用方案 1、热注蒸汽管道保温解决方案气凝胶绝热毡保温 热注蒸汽管网保温工程现状 1. 保温结构不合理、保温厚度不规范、保温施工不到位。 2. 易变形、沉降,热稳定性差,破损率大,后期保温效果差,无法满足工艺要求。 3. 保温效果差且下降明显,导致保温工程维护成本提升,设备运行费用增加。 4. 使用寿命基本只有35年,到期需全部更换。 5. 不完全防水,易吸水吸潮腐蚀管道,管壁变薄带来安全隐患。 传统保温材料与纳诺气凝胶绝热毡对比见下表:气凝胶绝热毡保温方案与经济效益 以管道外径114mm,温度350的热注蒸

49、汽管道(直管段)为例,对纳诺气凝胶与传统保温材料的使用厚度、保温效果、经济效益进行分析如下: 方案一: 采用气凝胶隔热毡作为保温材料,内层用铝箔降低热辐射,保温层外用彩钢板进行防护。 方案二: 采用气凝胶隔热毡作为主体保温材料,结合复合硅酸盐毡辅助保温的方式,内层用铝箔降低热辐射,保温层外用彩钢板进行防护。 节能效果 以上计算条件为环境温度25,基本无风,在有风的情况下,由于传统保温中复合硅酸盐毡的表面温度高,因此表面散热损失将更明显。 经济效益 传统材料使用寿命:3年,管道长度:1000米。 实际应用过程中,复合硅酸盐毡在使用2、3个月后,保温效果将越来越差,损失的热量将更大。 2、无机纳米建筑保温毡建筑围护结构超级保温材料 无机纳米保温毡是以纳米二氧化硅气凝胶为主体材料,通过特殊工艺复合而成的集保温、防火、防水、隔音于一体的建筑保温隔热材料。 基本技术指标 主要性能 保温隔热性能: 其导热系数在常温下可到达0.013 W/(m·k),几乎只有挤塑聚苯板的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论