初中一次函数及相关典型例题学生用_第1页
初中一次函数及相关典型例题学生用_第2页
初中一次函数及相关典型例题学生用_第3页
初中一次函数及相关典型例题学生用_第4页
初中一次函数及相关典型例题学生用_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 一次函数复习课典例讲解1.已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式2. 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-x; (2)y=-; (3)y=-3-5x;(4)y=-5x2; (5)y=6x- (6)y=x(x-4)-x2.3. 当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?4.一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长05cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数5.学生做一做 乌鲁木齐至库

2、尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是 .6.某物体从上午7时至下午4时的温度m()是时间t(时)的函数:m=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 7. 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值8.已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是 .9. 若正比例函数y=(1-2m)x的图象经过点a(x1,y1)和点b(x2,y

3、2),当x1x2时,y1y2,则m的取值范围是( )amobm0cmdmm10.某校办工厂现在的年产值是15万元,计划今后每年增加2万元(1)写出年产值y(万元)与年数x(年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值11. 已知一次函数y=kx+b的图象如图1122所示,求函数表达式12. 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式13. 已知y+a与x+b(a,b为是常数)成正比例(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?14. 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分

4、,再付电话费04元;“神州行”使用者不交月租费,每通话1分,付话费06元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?15. 已知y+2与x成正比例,且x=-2时,y=0(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点p在y轴负半轴上,(2)中的图象与x轴、y轴分别交于a,b两点,且sabp=4,求p点的坐标16.已

5、知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?17. 判断三点a(3,1),b(0,-2),c(4,2)是否在同一条直线上分析 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上18.老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-

6、x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快”乙生说:“直线y=-x与y=-x+6是互相平行的”你认为这两个同学的说法正确吗?19.某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠”乙旅行社说:“所有人按全票价的6折优惠”已知全票价为240元(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠分析 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论20.某公司到果园基地购买某种优质水果,慰

7、问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由21.一次函数y=kx+b的自变量x的取值范围是-3x6,相应函数值的取值范围是-5y-2,则这个函数的解析式为 .中考试题预测22.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(

8、元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160o;当x=3o时,y=200o(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?23. 已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3(1)求这个函数的解析式。(2)在直角坐标系内画出这个函数的图象分析 求函数的解析式,需要两个点或两对x,y的值,把它们代入y=kx+b中,即可求出k在的值,也就求出这个函数的解析式,进而画出这个函数的图象24. 如图1127所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距某项研究表明,一般

9、情况下人的身高h是指距d的一次函数,下表是测得的指距与身高的一组数据指距d/cm20212223身高h/cm160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?25. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米时,那么汽车距成都的路程s(千米)与行驶时间t(时)的函数关系用图象(如图1128所示)表示应为( )26.已知函数:(1)图象不经过第二象限;(2)图象经过点(2,-5).请你写出一个同时满足(1)和(2)的函数关系式: 27. 人在运动时的心跳速率通常和人的年龄有关如

10、果用a表示一个人的年龄,用b表示正常情况下这个人运动时所能承受的每分心跳的最高次数,另么b=08(220-a)(1)正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是多少?(2)一个50岁的人运动10秒时心跳的次数为20次,他有危险吗?分析 (1)只需求出当a=16时b的值即可(2)求出当a=50时b的值,再用b和20=120(次)相比较即可28. 某市的a县和b县春季育苗,急需化肥分别为90吨和60吨,该市的c县和d县分别储存化肥100吨和50吨,全部调配给a县和b县已知c,d两县运化肥到a,b两县的运费(元吨)如下表所示(1)设c县运到a县的化肥为x吨,求总运费w(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案29.2006年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降,图1129是某水库的蓄水量v(万米2)与干旱持续时间t(天)之问的关系图,请根据此图回答下列问题(1)该水库原蓄水量为多少万米2?持续干旱10天后水库蓄水量为多少万米3?(2)若水库存的蓄水量小于400万米3时,将发出严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报? (3)按此规律,持续干旱多少天时,水库将干涸?30. 图1130表示甲、乙两名选手在一次自行车越野赛中,路程y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论