版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第24章圆回顾与小结相信自己我能行相信自己我能行1.如图,如图, o的半径的半径oa=10cm,弦,弦ab=16cm,p为为ab上一动点上一动点,则点则点p到圆心到圆心o的最短距离为的最短距离为 。 第第1题题 第第3题题 第第4题题2.一条弦把圆分为一条弦把圆分为2 3的两部分,那么这条弦所对的圆周角度数为的两部分,那么这条弦所对的圆周角度数为 。3. 如图如图,cd是是 o的直径的直径,弦弦abcd,若,若aob100,则,则abd 。4.如图,小红要制作一个高为如图,小红要制作一个高为8cm,底面圆直径是,底面圆直径是12cm的圆锥形小漏斗,若不的圆锥形小漏斗,若不计接缝,不计损耗,则她
2、所需纸板的面积是计接缝,不计损耗,则她所需纸板的面积是_ opbaadbco5.如图如图pa,pb,cd都是圆都是圆o的切线的切线,pa的长的长为为4cm,则则pcd的周长为的周长为_cm p6. 已知圆已知圆o1与圆与圆o 2的半径分别为的半径分别为12和和2,圆心圆心o1的坐标为的坐标为(0,8),圆心圆心o2 的坐标为的坐标为(-6,0),则两圆的位置关系是则两圆的位置关系是_.7.如图,等腰梯形如图,等腰梯形abcd中,中,adbc,以,以a为圆心,为圆心,ad为半径的圆与为半径的圆与bc切于点切于点m,与与ab交于点交于点e,若,若ad2,bc6,则的长为,则的长为_.bcdo.a
3、a m d e b c第第7题题知识网络图知识网络图圆圆圆的基本性质圆的基本性质与圆有关的位置关系与圆有关的位置关系正多边形和圆正多边形和圆有关圆的计算有关圆的计算圆的对称性圆的对称性弧、弦、圆心角之间的关系弧、弦、圆心角之间的关系同弧上的圆周角与圆心角的关系同弧上的圆周角与圆心角的关系点和圆的位置关系点和圆的位置关系直线和圆的位置关系直线和圆的位置关系圆与圆的位置关系圆与圆的位置关系三角形外接圆三角形外接圆切线切线三角形内切圆三角形内切圆等分圆周等分圆周弧长弧长扇形面积扇形面积圆锥的侧面积和全面积圆锥的侧面积和全面积垂直于弦的直径垂直于弦的直径合作交流合作交流 在本章,我们利用圆的对称性,探
4、索了圆的一些重要性质;在本章,我们利用圆的对称性,探索了圆的一些重要性质;通过图形的运动,研究了点和圆、直线和圆、圆和圆的位置关通过图形的运动,研究了点和圆、直线和圆、圆和圆的位置关系;研究了圆中的有关计算问题系;研究了圆中的有关计算问题. . 在同圆或等圆中,在同圆或等圆中, 相等的圆心角所对的弧相等,所对的弦相等,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等所对的弦的弦心距相等. 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等距中有一组量相等,那么
5、它们所对应的其余各组量都分别相等.(1)(1)在同圆或等圆中的弧、弦、圆心角有什么关系?在同圆或等圆中的弧、弦、圆心角有什么关系?1.1.oabab垂直于弦的直径平分这条弦,并且平分弦所对的两条弧垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. .(1 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2 2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3 3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)平分弦所对的一条弧的直径,垂直平分弦,并
6、且平分弦所对的另一条弧. .(4 4)圆的两条平行弦所夹的弧相等)圆的两条平行弦所夹的弧相等. .(2) 垂直于弦的直径有什么性质?oabcde一条弧所对的圆周角等于它所对的圆心角的一半一条弧所对的圆周角等于它所对的圆心角的一半. . 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等的弧也相等. . 半圆(或直径)所对的圆周角是直角;半圆(或直径)所对的圆周角是直角;9090的圆周角所对的弦的圆周角所对的弦是直径是直径. .(3) (3) 一条弧所对的圆周角和它所对的圆心角有什么关系?一条弧所对的圆周角和它所对的圆心
7、角有什么关系?ac1oc2c3bacbod1、如图1,ab是 o的直径,c为圆上一点,弧ac度数为60,odbc,d为垂足,且od=10,则ab=_,bc=_;2、已知、是同圆的两段弧,且弧ab等于2倍弧ac,则弦ab与cd之间的关系为( );a.ab=2cd b.ab2cd d.不能确定3、 如图2, o中弧ab的度数为60,ac是 o的直径,那么boc等于 ( ); 图1a150 b130 c120 d604、在abc中,a70,若o为abc的外心,boc= ;若o为abc的内心,boc= a b c d o 图1 图2尝试练习一尝试练习一点点p在圆内在圆内 d r . 点点p在圆外在圆外
8、 d r ; 点点p在圆上在圆上 d = r; 直线和直线和 o相交相交 直线和直线和 o相离相离直线和直线和 o相切相切dr;d = r;dr.(1)点和圆有怎样的位置关系?如何判定)点和圆有怎样的位置关系?如何判定?(2)直线和圆位置有几种)直线和圆位置有几种,如何进行判定?如何进行判定?2.2.roappp alrdd r1r2;两圆外离两圆外离d = r1 r2;两圆内切两圆内切d = r1+r2;两圆外切两圆外切d r1 r2.两圆内含两圆内含r1+r2d r1+r2;两圆相交两圆相交(3 3)圆和圆的位置干关系有几种)圆和圆的位置干关系有几种? ? 如何判定如何判定? ?o2o1o
9、1o2o1o2 o1o2 o2o1oaola (1) (1)圆的切线有什么性质?圆的切线有什么性质?圆的切线垂直于过切点的半径圆的切线垂直于过切点的半径.经过半径的外端并且垂直于这条半径的直线是圆的切线经过半径的外端并且垂直于这条半径的直线是圆的切线.(2)(2)如何判断一条直线是圆的切线?如何判断一条直线是圆的切线?3.3.l圆心到直线的距离等于半径时直线是圆的切线圆心到直线的距离等于半径时直线是圆的切线正多边形必有外接圆和内切圆正多边形必有外接圆和内切圆.(1)(1)正多边形和圆有什么关系?正多边形和圆有什么关系?4.4.oabdrr一个正多边形的外接圆的圆心叫做这个多边形的中心一个正多边
10、形的外接圆的圆心叫做这个多边形的中心 外接圆的半径叫做正多边形的半径外接圆的半径叫做正多边形的半径 正多边形每一边所对的圆心角叫做正多边形的中心角正多边形每一边所对的圆心角叫做正多边形的中心角 中心到正多边形的一边的距离叫做正多边形的边心距中心到正多边形的一边的距离叫做正多边形的边心距正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系? 正n边形的半径,边心距,边长又有什么关系? 尝试练习二尝试练习二1、两个同心圆的半径分别为3 cm和4 cm,大圆的弦bc与小圆相切,则bc=_ cm;2、如图2,在以o为圆心的两个同心圆中,大圆的弦ab是小圆的切线,p为切点,设
11、ab=12,则两圆构成圆环面积为_;3、下列四个命题中正确的是( )与圆有公共点的直线是该圆的切线 ; 垂直于圆的半径的直线是该圆的切线 ; 到圆心的距离等于半径的直线是该圆的切线 ;过圆直径的端点,垂直于此直径的直线是该圆的切线a. b. c. d.a b p o 尝试练习三尝试练习三、判断。1、三角形的外心到三角形各边的距离相等; ( )2、直角三角形的外心是斜边的中点 ( )二、填空:1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆 半径,内切圆半径;2、等边三角形外接圆半径与内切圆半径之比三、选择题:下列命题正确的是( )a、三角形外心到三边距离相等b、三角形的内心不一定
12、在三角形的内部c、等边三角形的内心、外心重合d、三角形一定有一个外切圆四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三角形的面积为_30cm因为因为360的圆心角所对的弧长就是圆周长的圆心角所对的弧长就是圆周长c=2r,所以,所以1的的圆心角所对的弧长是圆心角所对的弧长是 ,即,即 。于是可得半径为。于是可得半径为r的圆的圆中,中,n的圆心角所对的弧长的圆心角所对的弧长l的计算公式为:的计算公式为:2360r180r180n rl(1)(1)举例说明如何计算弧长?举例说明如何计算弧长?5.5.o12360180rr1的圆心角所对的弧长是的圆心角所对的弧长是180rlnn的圆
13、心角所对的弧长的为的圆心角所对的弧长的为n1(2)(2)举例说明如何计算扇形面积举例说明如何计算扇形面积n11 1的扇形面积是的扇形面积是21360rn圆心角的扇形的面积圆心角的扇形的面积在半径为在半径为r的圆中,因为圆心角是的圆中,因为圆心角是360的扇形面积就的扇形面积就是圆面积是圆面积 ,所以圆心角是,所以圆心角是1的扇形面积的扇形面积是是 。这样,在半径为。这样,在半径为r的圆中,圆心角为的圆中,圆心角为n的的扇形面积的计算公式是:扇形面积的计算公式是:2360n rs扇 形2sr 2360r2360rn 圆锥的侧面展开图是一个扇形,设圆锥的母线圆锥的侧面展开图是一个扇形,设圆锥的母线长为长为l,底面圆的半径为,底面圆的半径为r,那么这个扇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《增值的战略评估》课件
- 2024年版老人赡养义务分配合同范本版
- 2025年石家庄货运从业资格证考试模拟考试题目
- 2024年消防工程总分包协议执行条款详述版
- 安徽省淮北市五校联考2022-2023学年八年级下学期第一次月考历史试题
- 第5单元(A卷•知识通关练)(原卷版)
- 2024年土地储备补充协议范本3篇
- 2024年物流服务协议核心注意事项版B版
- 《真假币识别办法》课件
- 2024外墙装饰租赁及维护一体化合同3篇
- 2024年度餐饮店合伙人退出机制与财产分割协议2篇
- 《岁末年初重点行业领域安全生产提示》专题培训
- 《招商银行转型》课件
- 灵新煤矿职业病危害告知制度范文(2篇)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 手术室的人文关怀
- 2024合作房地产开发协议
- 农贸市场通风与空调设计方案
- 第25课《周亚夫军细柳》复习课教学设计+2024-2025学年统编版语文八年级上册
- 2024年广东省深圳市中考英语试题含解析
评论
0/150
提交评论