版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-10-17数学因思维显智慧数学因思维显智慧 数学因运算而成体系数学因运算而成体系 向量因为运算而体现它向量因为运算而体现它的无穷威力!的无穷威力! 2021-10-17知识回顾知识回顾 1. 向量与数量有何区别向量与数量有何区别? 2. 怎样来表示向量向量怎样来表示向量向量? 3. 什么叫相等向量向量什么叫相等向量向量?1)用有向线段来表示用有向线段来表示,线段的长度表示线段的大小,箭头所线段的长度表示线段的大小,箭头所指方向表示向量的方向指方向表示向量的方向。AB2)用字母来表示,或用表示向量的有向线段的起点和终用字母来表示,或用表示向量的有向线段的起点和终点字母表示点字母表示.
2、如aAB,长度相等长度相等,方向相同的向量相等方向相同的向量相等.(正因为如此正因为如此,我们研究的向量是我们研究的向量是与起点无关与起点无关的的自由向量自由向量,即任何向即任何向量可以在不改变它的大小和方向的前提下量可以在不改变它的大小和方向的前提下,移到任何位置移到任何位置.)4.什么叫做平行向量?平行向量与共线向量有什么什么叫做平行向量?平行向量与共线向量有什么区别?区别? 上海上海香港香港台北台北引入引入1:上海上海香港香港台北台北OABOABOA+AB=OB向量加法的三角形法则:向量加法的三角形法则:abba abCAB ,abAABa BCbACabababABBCAC 、内点 ,
3、则与,记 则 这称为 已已知知非非零零向向量量在在平平面面任任取取一一作作向向量量叫叫做做的的和和作作即即种种求求向向量量和和向向量量加加法法的的三三角角方方法法,形形法法的的。首尾连首尾连首尾相接首尾相接尝试练习一:尝试练习一:ACABCDE_ABBC _BCCD _ABBCCD BD AD(1)根据图示填空:)根据图示填空:_ABBCCDDE AE 2021-10-17尝试练习一:不看图,会求了吗?尝试练习一:不看图,会求了吗?ACABCDE_ABBC _BCCD _ABBCCD BD AD(1)填空)填空:_ABBCCDDE AE 例例1.如图,已知向量如图,已知向量 ,求作向量,求作向
4、量 。, a b abab 则则 OBab OABaba 三角形法则三角形法则作法作法1:在平面内任取一点:在平面内任取一点O,作作 , ,OAa ABb b例题讲解:例题讲解:2021-10-17思考思考1:如图,当在数轴上两个向量:如图,当在数轴上两个向量共线共线时,加法的时,加法的三角形三角形法法 则则是否还适用?如何作出两个向量的和?是否还适用?如何作出两个向量的和?abab(1)(2)| |ababab 若 , 方向相同,则ABCBCAabab00aaa规 定 :| |abababba 若 , 方向相反,则(或)2021-10-17 当向量当向量 不共线时,和向量的长度不共线时,和向
5、量的长度 与向量与向量 的长度和的长度和 之间的大小关系如何?之间的大小关系如何?a b 、|abab、|ababab三角形的两边之和大于第三边三角形的两边之和大于第三边| |ababab 当向量、不共线时有综合以上探究我们可得结论:| |abab2021-10-17 图图1 1表示橡皮条在两个力表示橡皮条在两个力F F1 1和和F F2 2的作用下,沿的作用下,沿MCMC方向方向伸长了伸长了EOEO;图;图2 2表示橡皮条在一个力表示橡皮条在一个力F F的作用下,沿相同的作用下,沿相同方向伸长了相同长度方向伸长了相同长度EOEO。从力学的观点分析,力。从力学的观点分析,力F F与与F F1
6、1、F F2 2之间的关系如何?之间的关系如何?MCEOF1F2图图1ME OF图图2F=FF=F1 1+F+F2 2F2F1F引入引入2:OABCabba ,Oa bOACBOOCaabbabOAOBOC 点 为点两个为邻边则为点对线与 这平行四边则称为 以以同同一一起起的的已已知知向向量量 、 作作, ,以以起起的的角角就就是是 的的和和即即向向量量加加法法的的种种求求向向量量和和的的方方法法,形形法法。起点相同起点相同向量加法的平行四边形法则:向量加法的平行四边形法则:OABCabba 起点相同起点相同向量加法的平行四边形法则:向量加法的平行四边形法则: 文字表述为:以同一起点的两个向量
7、为邻边作平行文字表述为:以同一起点的两个向量为邻边作平行四边形,则以公共起点为起点的对角线所对应向量就是四边形,则以公共起点为起点的对角线所对应向量就是和向量。和向量。例例1.如图,已知向量如图,已知向量 ,求作向量,求作向量 。, a b ababO例题讲解:例题讲解:作法作法2:在平面内任取一点:在平面内任取一点O,作作 , ,OAa OBb OAOB、以以 为邻边作为邻边作 OACB ,.OCOAOBab 连结连结OC,则,则abba BCA平行四边形法则平行四边形法则尝试练习二:尝试练习二:(3)(3)已知向量已知向量 ,用向量加法的,用向量加法的三角形法则三角形法则和和平行四边形平行
8、四边形法则作出法则作出a b 、ab abbba2021-10-17思考思考2:数的加法满足交换律和结合律,即对任意数的加法满足交换律和结合律,即对任意 ,有有,a bR,abba()().abcabc 那么对任意向量那么对任意向量 的加法是否也满足交换律和结合律?的加法是否也满足交换律和结合律?请画图进行探索。请画图进行探索。,a b OABCabba abba abccb cba ACDabba()().a bc ab c 2021-10-17例例2.长江两岸之间没有大桥的地方,常常通过轮船进行运输,长江两岸之间没有大桥的地方,常常通过轮船进行运输,如图所示,一艘船从长江南岸如图所示,一艘
9、船从长江南岸A点出发,以点出发,以 km/h的速度向的速度向垂直于对岸的方向行驶,同时江水的速度为向东垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度;)试用向量表示江水速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水速度的夹)求船实际航行的速度的大小与方向(用与江水速度的夹 角来表示)。角来表示)。2 3ADBC,ADABADABABCDAC 图, 、为邻边则实际.解解:(1 1)如如所所示示表表示示船船速速表表示示水水速速以以作作表表示示 船船航航行行的的速速度度2021-10-17例例2.长江两岸之间
10、没有大桥的地方,常常通过轮船进行运输,长江两岸之间没有大桥的地方,常常通过轮船进行运输,如图所示,一艘船从长江南岸如图所示,一艘船从长江南岸A点出发,以点出发,以 km/h的速度向的速度向垂直于对岸的方向行驶,同时江水的速度为向东垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度;)试用向量表示江水速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水速度的夹)求船实际航行的速度的大小与方向(用与江水速度的夹 角来表示)。角来表示)。2 3(2)| 2,| 2 3RtABCABBC 解: 在中,2222|2(2 3
11、)4 ACABBC 2 3tan32CAB60 .CAB答:船实际航行速度为答:船实际航行速度为4km/h,方向与水的流速间的夹角为方向与水的流速间的夹角为60。ADBC2021-10-17(1)你还能回想起实数的相反数是怎样定义的吗?)你还能回想起实数的相反数是怎样定义的吗?(2)两个实数的减法运算可以看成加法运算吗?)两个实数的减法运算可以看成加法运算吗?思考思考:如设如设,x yR xy()xy 实数实数 的相反数记作的相反数记作 。aa如何定义向量的减法运算呢?如何定义向量的减法运算呢? 向量的减法运算及其几何意义向量的减法运算及其几何意义回顾:回顾:2021-10-17一、相反向量:
12、一、相反向量:规定:规定:设向量设向量 ,我们把与,我们把与 长度相同,方向相反长度相同,方向相反aa的向量叫做的向量叫做 的相反向量。的相反向量。a(1)()a (3)设)设 互为相反向量,那么互为相反向量,那么,a b,0ab ba ab 2.2.2 向量的减法运算及其几何意义向量的减法运算及其几何意义记作:记作: a的相反向量仍是的相反向量仍是 。00二、向量的减法:二、向量的减法:()abab (2)()aa()aaa002021-10-17BACab设设,AB b AC a DEb()AEab 又又b BC a 所以所以BCa b ababab你能利用我们学过的向量的加法法则作出你能
13、利用我们学过的向量的加法法则作出 吗?吗? ()ab 不借助向量的加法法则你能直接作出不借助向量的加法法则你能直接作出 吗?吗? a b2021-10-17三、几何意义:三、几何意义: 可以表示为从向量可以表示为从向量 的终点指向向量的终点指向向量 的终点的向量的终点的向量ba ba(1)如果从)如果从 的终点指向的终点指向 终点作向量,所得向量是什么呢?终点作向量,所得向量是什么呢?ab(2)当)当 , 共线时,怎样作共线时,怎样作 呢?呢?ababABOABOaOA bOB abBA 注意:注意:(1)起点必须相同起点必须相同。(。(2)指向)指向被减向量被减向量的终点。的终点。ba一般地
14、一般地abBabbAO(三角形法则)(三角形法则)a练习:练习:(1)ABAD (3)BCBA (2)BABC (4)OD OA (5)OA OB DB CA ACADBA 2021-10-17三、几何意义三、几何意义注意:注意:(1)起点必须相同。()起点必须相同。(2)指向)指向被减向量被减向量的终点。的终点。一般地一般地abBabbAO 可以表示为从向量可以表示为从向量 的终点指向向量的终点指向向量 的终点的向量的终点的向量ba ba练习:练习:(1)ABAD (3)BCBA (2)BABC (4)OD OA (6)AO BO (5)OA OB DB CA ACADAB BA 2021-
15、10-17已知向量已知向量 ,求作向量,求作向量 , 。ab例例3, , ,a b c d cd abcd OBACDabd c作法:作法:在平面内任取一点在平面内任取一点O,,OA a ,OB b ,OC c ,OD d 则则BAab DCcd 作作注意:注意:起点相同,连接终点,指向被减向量的终点。起点相同,连接终点,指向被减向量的终点。a b c d 2021-10-17练习:练习:ab已知向量已知向量 ,求作向量,求作向量 。ab,a b (1)(2)ab(3)(4)abbaa b a b a b a b 2021-10-17ABCD解:由作向量和的平行解:由作向量和的平行四边形法则,
16、得四边形法则,得AC=a+b;由作向量差的方法,知由作向量差的方法,知DB=AB-AD=a-b.ab例例2 2: 平行四边形平行四边形ABCDABCD中,中,AB=a,AD=b,AB=a,AD=b,用用 a, ba, b表示向量表示向量AC,DBAC,DB。2021-10-17例例3 : 化简化简 ( (A AB B- -C CDD) )- -( (A AC C- -B BDD) )解解: ( (A AB B- -C CD D) )- -( (A AC C- -B BD D) ) = =A AB B- -C CD D- -A AC C+ +B BD D= = A AB B+ +D DC C+
17、+C CA A+ +B BD D = =( (A AB B+ +B BDD) )+ +( (DDC C+ +C CA A) ) = =A ADD+ +DDA A = = 0 02021-10-17 ,ABaADbABADABCD 解设作以和为邻边作平行四边形。则ADBC,AC a bDB a b |ababA CD BAB,ADABCD,ABCD为矩形所以四边形为平行四边形又因为四边形2222|6810| | 10DBDBDBaba b ba例例4已知已知|a|=6,|b|=8,且且|a+b|=| a- b|,求求|a- b|.2021-10-17AB BC AC222练习练习1正方形正方形A
18、BCD边长为边长为1,=a,=b, =c,则,则|a+b+c|等于(等于( )A0 B3 C DC练习练习2 2化简化简PMPNMN 结果是结果是 0 02021-10-17练习3 a,b为非零向量,且为非零向量,且|a- b|=| a|+| b|,则则 ( )Aa与与b方向相同方向相同 Ba = b Ca =b Da与与b方向相反方向相反ab|ab练习练习4 4向量向量 , , 的模分别是的模分别是3,4,求,求的取值范围。的取值范围。 D D1,71,72021-10-17ABCD练习练习5:5:如图:平行四边形如图:平行四边形ABCD, ABCD, 用用 表示向量表示向量 , aAB , bAD ba,.,DBACba变式五变式五: :若若|AB|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告承搅合同模板
- 2024年PDA设备及技术支持合同
- 教师视力保护知识培训方案
- 济南网上购物合同模板
- 委托公司加工合同模板
- 涉案资金租赁合同模板
- 2024年家庭健身设施租赁合同
- 互联网医疗健康项目合作合同
- 互联网人才招聘服务平台建设合同
- 养殖工劳务合同模板
- 高中政治部编版教材高考双向细目表
- 四年级上册英语课件- M3U2 Around my home (Period 3) 上海牛津版试用版(共18张PPT)
- 轮扣式模板支撑架安全专项施工方案
- 酒店装饰装修工程验收表
- 新北师大版六年级上册数学全册教案(教学设计)
- 呼吸科(呼吸与危重症医学科)出科理论试题及答案
- 调研报告:关于棚户区改造现状、存在问题及对策建议
- 技工学校教师工作规范
- 2022年医院关于缩短患者平均住院日的管理规定
- 清新个人工作述职报告PPT模板
- GWJ 006-2016 超短波频段监测基础数据存储结构技术规范
评论
0/150
提交评论