版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 本章主要内容本章主要内容Uncertainty Principle - 一维势箱中运动的粒子一维势箱中运动的粒子结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.1 经典物理学的困难经典物理学的困难经典物理学经典物理学Gibbs-Boltzman统计力学统计力学Maxwell电磁理论电磁理论Newton力学力学结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程物理学的大厦已经完物理学的大
2、厦已经完成,今后物理学家的成,今后物理学家的任务只是把实验做得任务只是把实验做得更精确些。更精确些。自然界的一切现象是否全部自然界的一切现象是否全部可以凭借经典物理学来理解可以凭借经典物理学来理解十九世纪热和光的动力理论上空的乌云十九世纪热和光的动力理论上空的乌云开尔文开尔文结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程经典物理学的一些基本观点:经典物理学的一些基本观点: 质量恒定,不随速度改变质量恒定,不随速度改变 物体的能量是连续变化的物体的能量是连续变化的 物体有确定的运动轨道物体有确定的运动轨道 光的现象只是一种波动光的现象只是一种波动经典物理学的研究范围
3、:经典物理学的研究范围:p 经典物理学向高速领域推广经典物理学向高速领域推广观点观点不成立,物体接近光速不成立,物体接近光速相对论力学相对论力学 p 经典物理学微观领域推广经典物理学微观领域推广观点观点不成立研究对象向微观发展不成立研究对象向微观发展量子力学量子力学 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.2 量子力学的实验基础量子力学的实验基础1.2.1 黑体辐射和能量量子化黑体辐射和能量量子化研究对象研究对象:辐射与周围物体:辐射与周围物体处于平衡状态时的能量密度处于平衡状态时的能量密度 () 按波长按波长()的分布。的分布。 黑体黑体:能全部:能全
4、部吸收照射到它吸收照射到它上面各种波长上面各种波长辐射的物体。辐射的物体。实验结果:实验结果:平平衡时辐射能量衡时辐射能量密度按波长分密度按波长分布的曲线,布的曲线,其其形状和位置只形状和位置只与黑体的绝对与黑体的绝对温度有关,而温度有关,而与空腔的形状与空腔的形状及组成的物质及组成的物质无关无关。 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程u 1986年维恩年维恩( (Wien) )假设黑体辐射是由一些服从假设黑体辐射是由一些服从Maxwell速率分速率分布布的分子发射出来的,得到辐射能量密度与波长的经验关系式:的分子发射出来的,得到辐射能量密度与波长的经验
5、关系式:5/(8/)hcKThce经典物理学方法解释经典物理学方法解释优缺点优缺点:短波方面与实验相符,但在长波方面偏差大。:短波方面与实验相符,但在长波方面偏差大。u 1904年瑞利年瑞利- -金斯用金斯用经典热力学和统计力学原理经典热力学和统计力学原理,得到辐射,得到辐射能量密度与波长的经验关系式:能量密度与波长的经验关系式:48/KT优缺点优缺点:长波方面与实验相符,但在短波方面偏差大。:长波方面与实验相符,但在短波方面偏差大。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程u 1900年普朗克提出年普朗克提出能量量子化能量量子化假设:假设:u 黑体由不同频率
6、的谐振子组成,黑体由不同频率的谐振子组成,u 谐振子吸收或发射辐射的能量是不连续的,每个特定频率谐振子吸收或发射辐射的能量是不连续的,每个特定频率的辐射能量的最小单位为的辐射能量的最小单位为 0=h。 0 被称为能量子。被称为能量子。u谐振子的辐射能量谐振子的辐射能量 E只能是只能是 0 的整数倍,的整数倍,E = n0 = nhv n=0,1,2v 是谐振子的频率,是谐振子的频率,h =6.62610-34Js , 称为普朗克常数,称为普朗克常数,n 称为量子数。称为量子数。 3122(1)hkThEec 优缺点优缺点:与实验观察一致,:与实验观察一致,与经典谐振子能量与振幅且与经典谐振子能
7、量与振幅且能量连续变化不符。能量连续变化不符。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.2.2 光电效应和光子学说光电效应和光子学说 只有当照射光的频率超过某个最小只有当照射光的频率超过某个最小频率频率0 时,才有光电子产生。时,才有光电子产生。 随着光的强度增大,发射的电子数随着光的强度增大,发射的电子数目增多,但不影响光电子的动能。目增多,但不影响光电子的动能。 增大频率,光电子动能随之增大。增大频率,光电子动能随之增大。 光电效应光电效应:入射光:入射光经过石英管照射在经过石英管照射在金属极上产生电子。金属极上产生电子。实验现象如下:实验现象如下:
8、按照光的电磁波理论:按照光的电磁波理论: 光的能量是由光的强光的能量是由光的强度决定的(并非由频度决定的(并非由频率决定)。只要光足率决定)。只要光足够强,就会有光电子够强,就会有光电子产生,即光电效应理产生,即光电效应理应对各种频率的光都应对各种频率的光都发生。发生。光强度越大,光电子光强度越大,光电子的动能也应该越大;的动能也应该越大;显然,经典的电磁波显然,经典的电磁波理论无法解释光电效理论无法解释光电效应现象。应现象。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程光是一束光子流,每种频率的光的能量都有其最小单位光是一束光子流,每种频率的光的能量都有其最小单
9、位 即即 =h v光子静止质量为零,运动质量为光子静止质量为零,运动质量为m。根据质能关系。根据质能关系=mc2, m =/c2 = hv/c2 光子具有一定的动量光子具有一定的动量p。p=mc=hv/c=h/ 光的强度取决于单位体积内光子的数目,即光子的密度光的强度取决于单位体积内光子的数目,即光子的密度 1234Einstein光子学说(光子学说(1905)结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 将频率为将频率为v的光照射到金属上,当产生光电效应时,光子的光照射到金属上,当产生光电效应时,光子消失,将能量传给电子。电子吸收的能量部分用于克服金消失,将能
10、量传给电子。电子吸收的能量部分用于克服金属对它的束缚力(逸出功),部分转化为电子的动能。属对它的束缚力(逸出功),部分转化为电子的动能。 2012KhWEhm 式中式中W 是电子逸出金属所需要的最小能量(逸出功;是电子逸出金属所需要的最小能量(逸出功;EK是电子的动能。是电子的动能。 光电效应的解释光电效应的解释结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程上式解释了光电效应实验的全部结果:上式解释了光电效应实验的全部结果:当当hvW 时,光子无足够能量使电子逸出,不发生光电效应;时,光子无足够能量使电子逸出,不发生光电效应;当当hv =W 时,时, 这时的频率为
11、产生光电效应的临阈频率这时的频率为产生光电效应的临阈频率(v0) ;当当hvW 时,逸出电子的动能随时,逸出电子的动能随v的增加而增加,与光强无关。的增加而增加,与光强无关。但光的强度的增加可增大光束中单位体积内的光但光的强度的增加可增大光束中单位体积内的光子数,因此增加发射电子的数目。子数,因此增加发射电子的数目。 2012KhWEhm结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 标志光的粒子性的能量和动量,和标志波动性的光的频率标志光的粒子性的能量和动量,和标志波动性的光的频率和波长之间,遵循爱因斯坦关系式和波长之间,遵循爱因斯坦关系式h/hp 粒粒子子波波
12、相互作用相互作用传播过程传播过程 “光子说光子说”表明了表明了光不仅有光不仅有波动性波动性,且有,且有微粒性微粒性,这,这就是光的波粒二象性思想。就是光的波粒二象性思想。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1. 3 实物粒子的波粒二象性及不确定原理实物粒子的波粒二象性及不确定原理实物微粒实物微粒是指静止质量不为零的微观粒子。如电子、原子、分子等。是指静止质量不为零的微观粒子。如电子、原子、分子等。 1924年年de Broglie受光的波粒二象性的启示,大胆提出了实受光的波粒二象性的启示,大胆提出了实物微粒也具有波性的假设。他认为物微粒也具有波性的假设。
13、他认为:整个世纪来,在光学上,整个世纪来,在光学上,比起波动的研究方法,是否忽略了粒子的研究方法;在实物微比起波动的研究方法,是否忽略了粒子的研究方法;在实物微粒上,是否发生了相反的错误?是不是把粒子的图象想得太多粒上,是否发生了相反的错误?是不是把粒子的图象想得太多而过于忽略了波的图象?而过于忽略了波的图象?1.3.1 实物粒子的波粒二象性实物粒子的波粒二象性(1)德布罗依(德布罗依(De Brogile)假设)假设结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程Ehmvhph德布罗依(德布罗依(De Brogile)关系式)关系式 de Broglie波的传播速
14、度为相速度波的传播速度为相速度u, 不等于粒子运动速不等于粒子运动速度度v; 它可以在真空中传播,因而不是机械波;它产生于所它可以在真空中传播,因而不是机械波;它产生于所有带电或不带电物体的运动,因而也不是电磁波有带电或不带电物体的运动,因而也不是电磁波. De Broglie提出实物微粒也具有波性,以此作为克服提出实物微粒也具有波性,以此作为克服旧量子论的缺点,探求微观粒子运动的根本途径,这种实旧量子论的缺点,探求微观粒子运动的根本途径,这种实物微粒所具有的波就称为物微粒所具有的波就称为物质波或德布罗依波物质波或德布罗依波。 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结
15、构化学课程 动量为动量为p的自由粒子(位能的自由粒子(位能V=常数或常数或V=0) ,当它的运动速,当它的运动速度比光速小得多时(度比光速小得多时(c) 21+2ETVmeV3431199 26.626 10 2 9.11 101.602 101.22612.26 10 ( )hhhpmvmeVVmAVV对电子等实物粒子,其德布罗依波长具有对电子等实物粒子,其德布罗依波长具有数量级。数量级。 (2)德布罗波波长的估算德布罗波波长的估算结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程例:求以例:求以1.0106ms-1的速度运动的电子的的速度运动的电子的de Brog
16、lie波波长波波长。 大小相当于分子大小的数量级,说明原子和分子中电子运动大小相当于分子大小的数量级,说明原子和分子中电子运动的波效应是重要的。但与宏观体系的线度相比,波效应是微的波效应是重要的。但与宏观体系的线度相比,波效应是微小的。小的。 =(6.610-34Js)/(9.110-31kg1.0106ms-1)= 710-10m = 7 hm结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 当当V=102104 V时,从理论上已估算出电子德布罗依波时,从理论上已估算出电子德布罗依波长为长为1.20.12,与,与x光相近(光相近(0.1100 ),用普通的光),用
17、普通的光学光栅是无法检验出其波动性的。学光栅是无法检验出其波动性的。 戴维戴维-革末实验革末实验单晶镍(单晶镍(C.J.Davtsson) 汤姆逊实验汤姆逊实验金金-钒多晶(钒多晶(G.P.Thomson)(3) De Brogile 波的实验证实波的实验证实结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程衍射束的方向性衍射束的方向性入射束入射束衍射束衍射束晶体晶体 他发现当一束他发现当一束 50eV的电子垂直地射在镍单晶的表面上时,的电子垂直地射在镍单晶的表面上时,在和入射束成在和入射束成50度角的方向上表现有反射出来最多的电子数。度角的方向上表现有反射出来最多的
18、电子数。hhpm12.261.67V 2122VemeVm德布罗意关系式计算:德布罗意关系式计算:2dsin1.65hklh k ln 布拉格(布拉格(Bragg)方程)方程:结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程汤姆逊实验汤姆逊实验 汤姆逊使用了能量较大的电子,足以穿透如金、铝、铂汤姆逊使用了能量较大的电子,足以穿透如金、铝、铂等金属薄膜,结果也得到了类似等金属薄膜,结果也得到了类似X X射线衍射的花纹,从而也射线衍射的花纹,从而也证明了德布罗意波的存在。证明了德布罗意波的存在。2 sin2ndhhpm实验实验:德布罗意关系德布罗意关系:证明实验结果与理
19、论推断一致,推广到了中子、质子等粒子流。证明实验结果与理论推断一致,推广到了中子、质子等粒子流。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程(4) De Brogile 波的统计解释波的统计解释p 电子的干涉作用并非两个电子的相互电子的干涉作用并非两个电子的相互作用作用, ,而是其而是其波动本性决定波动本性决定. .p 电子到达底片前电子到达底片前, ,无法确定打在底片上无法确定打在底片上的某处的某处, ,只知某处的可能性大只知某处的可能性大, ,某处的某处的可能性小可能性小, ,这是从其这是从其粒子性粒子性上考虑上考虑. .p 从从波动性波动性考虑考虑, ,底
20、片黑圈处物质波的强底片黑圈处物质波的强度最大度最大, ,波峰与波峰相遇处波峰与波峰相遇处. .结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 机械波是机械波是介质质点的振动介质质点的振动,电磁波是,电磁波是电场和磁场在电场和磁场在空间传播的波空间传播的波,而实物微粒的波没有这种直接的物理,而实物微粒的波没有这种直接的物理意义。意义。实物微粒波的强度反映粒子出现几率的大小,实物微粒波的强度反映粒子出现几率的大小,故称几率波。故称几率波。但是有一点和经典波是相似的,即都表但是有一点和经典波是相似的,即都表现有波的相干性。所有这些和经典力学既有本质的差现有波的相干性。所
21、有这些和经典力学既有本质的差异,又有密切联系的现象,正是微观体系的本性特点异,又有密切联系的现象,正是微观体系的本性特点之所在。之所在。 实物微粒波与机械波的物理意义异同实物微粒波与机械波的物理意义异同 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.3.2 实物粒子的波粒二象性的必然结果实物粒子的波粒二象性的必然结果不确定原理不确定原理xxph 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 具有波动性的电子通过狭缝时会展宽,得到衍射图样,图中曲线表示屏具有波动性的电子通过狭缝时会展宽,得到衍射图样,图中曲线表示屏幕上各点的波强度
22、。曲线的极大值和极小值是由于从狭缝不同部位来的波互幕上各点的波强度。曲线的极大值和极小值是由于从狭缝不同部位来的波互相迭加与互相抵消的结果。当两列波的波程差为相迭加与互相抵消的结果。当两列波的波程差为波长的正数倍波长的正数倍时,互相迭加时,互相迭加得到最大程度的得到最大程度的加强加强;当两列波的波程差为;当两列波的波程差为半波长的奇数倍半波长的奇数倍时,互相抵消得时,互相抵消得到最大程度的到最大程度的减弱减弱。电子束的单缝衍射电子束的单缝衍射结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程sinsin22DOPAPOCOA对一级衍射对一级衍射 ysinPPACODe
23、AOQPxxxph xhDpppxsinCsinDhpDx 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 同样,时间同样,时间 t t 和能量和能量 E E 的不确定程度也有的不确定程度也有类似的测不准关系式类似的测不准关系式t E 2t E 或或结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 比起微尘运动的一般速度(比起微尘运动的一般速度(10-2m.s-1)是完全可以忽)是完全可以忽略的,至于质量更大的宏观物体,略的,至于质量更大的宏观物体,v就更小了。由此可就更小了。由此可见,可以认为宏观物质同时具有确定的位置和动量,因见,可
24、以认为宏观物质同时具有确定的位置和动量,因而服从经典力学规则。而服从经典力学规则。 34111586.6 106.6 10/1010 xxphJ svm smm xkgm由测不准关系式得由测不准关系式得 :例例1 对质量对质量m=10-15kg的微尘,求速度的不确定量。设微的微尘,求速度的不确定量。设微尘位置的测量准确度为尘位置的测量准确度为x=10-8m,结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程34336.6 106.6 100.01 1000 1%hxmm v 位置的不确定度位置的不确定度 x如此之小,与子弹的运动路程如此之小,与子弹的运动路程相比,完全
25、可以忽略。因此,可以用经典力学处理。相比,完全可以忽略。因此,可以用经典力学处理。 例例2 质量为质量为0.01kg的子弹,运动速度为的子弹,运动速度为1000m s-1,若速度的,若速度的不确定程度为其运动速度的不确定程度为其运动速度的1%,求其位置的不确定度。,求其位置的不确定度。 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程求原子、分子中运动的电子的速度不确定度。电子的求原子、分子中运动的电子的速度不确定度。电子的质量质量m =9.110-31kg,原子大小的数量级为,原子大小的数量级为10-10m。 已知电子的运动速度约为已知电子的运动速度约为106ms
26、-1,即当电子的位置的不确定程,即当电子的位置的不确定程度度x=10-10m时,其速度的不确定程度已大于电子本身的运动速度。时,其速度的不确定程度已大于电子本身的运动速度。因此,原子、分子中电子的不能用经典力学处理。因此,原子、分子中电子的不能用经典力学处理。 v = h/(xm) =(6.62610-34J.s)/(10-10m9.110-31kg) 106107m.s-1x = 10-10m例例3 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 宏观物体宏观物体 微观粒子微观粒子具有确定的坐标和动量,具有确定的坐标和动量, 没有确定的坐标和动量,没有确定的坐标
27、和动量,可用牛顿力学描述。可用牛顿力学描述。 必需用量子力学描述。必需用量子力学描述。 有连续可测的运动轨道,可有连续可测的运动轨道,可 只有概率分布特性,不能只有概率分布特性,不能追追追踪各追踪各个物体的运动轨迹。个物体的运动轨迹。 踪各个粒子的轨迹。踪各个粒子的轨迹。体系能量可以为任意的、连体系能量可以为任意的、连 能量量子化能量量子化 。续变化的数值。续变化的数值。不确定度关系无实际意义不确定度关系无实际意义 遵循不确定度关系遵循不确定度关系微观粒子和宏观物体的特性对比微观粒子和宏观物体的特性对比结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.3.3 量子
28、力学的建立量子力学的建立 总之,微观体系区别于宏观体系的两个显著特点是总之,微观体系区别于宏观体系的两个显著特点是物理物理量的量子化和波粒二象性量的量子化和波粒二象性,这使得经典物理学不适应了。那,这使得经典物理学不适应了。那么什么样的物理学理论能描述微观运动规律呢?于是人们提么什么样的物理学理论能描述微观运动规律呢?于是人们提出了描述微观粒子运动规律的力学理论出了描述微观粒子运动规律的力学理论量子力学,其中海量子力学,其中海森堡、薛定谔和狄拉克等做了大量工作。森堡、薛定谔和狄拉克等做了大量工作。矩阵力学矩阵力学线性代数线性代数波动力学波动力学微分方程微分方程结构化学课程结构化学课程化学与化工
29、学院化学与化工学院结构化学课程结构化学课程1.4 量子力学基本假设量子力学基本假设 量子力学建立在若干基本假设的基础上,这些量子力学建立在若干基本假设的基础上,这些假设与几何学的公理一样,不能用逻辑的方法加假设与几何学的公理一样,不能用逻辑的方法加以证明以证明。但从这些基本假设出发推导得出一些重要结论,但从这些基本假设出发推导得出一些重要结论,可以正确地解释和预测许多实验事实,于是这些假设也被可以正确地解释和预测许多实验事实,于是这些假设也被称为称为公理或公设公理或公设。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.4.1 波函数和微观粒子的状态波函数和微观粒
30、子的状态 与经典物理学类似,体系的任何一个微观状态都可用一个与经典物理学类似,体系的任何一个微观状态都可用一个的波函数的波函数 来描述,来描述, 是体系的状态函数,是体系中所有粒子是体系的状态函数,是体系中所有粒子的的坐标函数坐标函数,也是,也是时间函数时间函数。 (x, y, z, t)包含了体系的全部信包含了体系的全部信息,简称态。不含时间的波函数息,简称态。不含时间的波函数 (x, y, z) 称为称为定态波函数定态波函数。 例如:例如:对于一个两粒子体系,体系的对于一个两粒子体系,体系的波函数用波函数用 = (x1, y1, z1, x2, y2, z2, t)来描述。来描述。 定态:
31、几率密度与能量不随时间改变的状态定态:几率密度与能量不随时间改变的状态 10301exp/sr aa氢原子氢原子1s态态结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程(1) (1) 波函数的来源,以单粒子一维运动为例波函数的来源,以单粒子一维运动为例 将动量为将动量为p的向一维方向运动的自由粒子(的向一维方向运动的自由粒子(位能位能V=常数或常数或V=0)与)与一维平面单色波一维平面单色波相连系,可得一维相连系,可得一维实物波波函数实物波波函数 1cos2 ()cos2 ()2 cos()cos()xxxxpEAtAthhAxpEtAxpEth 结构化学课程结构化
32、学课程化学与化工学院化学与化工学院结构化学课程结构化学课程(2) 概率和概率密度概率和概率密度由波恩统计解释,粒子在空间某点的强度与粒子出现的几率成正比由波恩统计解释,粒子在空间某点的强度与粒子出现的几率成正比概率波概率波:用波函数:用波函数 描述的波。分子或原子中称为分子或原子轨道描述的波。分子或原子中称为分子或原子轨道概率密度概率密度:波函数的平方:波函数的平方 2 称为概率密度称为概率密度,有时用,有时用 * , *为为 的的 共轭复数,共轭复数,(例如例如 =f+i g, * =f-i g ) .概率概率:在空间某点附近体积元:在空间某点附近体积元 中电子出现的概率如下中电子出现的概率
33、如下:与波函数绝对值平方成正比与波函数绝对值平方成正比2*P( , , , )( , , , )( , , , )dkx y z tdkx y z tx y z t dddxdydzd结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 由于波函数描述的波是几率波,所以波函数由于波函数描述的波是几率波,所以波函数 必须满足必须满足下列三个条件:下列三个条件: 单值单值:即在空间每一点即在空间每一点 只能有一个值只能有一个值 ; 连续连续:即即 的值不会出现突跃,而且的值不会出现突跃,而且 对对x, y, z的一的一 级微商也是级微商也是 连续函数连续函数 ; 平方可积平
34、方可积:即波函数的即波函数的归一化归一化, 也就是说也就是说, 在整个空间的积分在整个空间的积分 必须等于必须等于 1 。符合这三个条件的波函数称为符合这三个条件的波函数称为合格波函数或品优波函数合格波函数或品优波函数。(3) 合格波函数的条件合格波函数的条件结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程不满足品优函数条件的情况不满足品优函数条件的情况结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程波函数归一化波函数归一化 一般情况下,总规定一个粒子在全部空间出现的概率为一般情况下,总规定一个粒子在全部空间出现的概率为1,故通常将波函数
35、归一化,即故通常将波函数归一化,即( , , )( , , )1x y zx y z d*1dk 称为归一化因子称为归一化因子*1()dc ck k1*1dkdkk 令令如果如果( , , )( , , )1x y zx y z d,则函数未归一化,需归一。,则函数未归一化,需归一。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程例例1 1:波函数:波函数 是否归一化了,如未归一化求归是否归一化了,如未归一化求归一化常数。一化常数。(0)xex 22200011(21)22xxdedxeee 2012211xcedx所以,所以, 未归一化,假设未归一化,假设 为归一
36、化函数,求系数为归一化函数,求系数c c:xexce结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程常用积分表常用积分表结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.4.2 物理量和算符物理量和算符 对一个微观体系的每个可观测量都对应着一个对一个微观体系的每个可观测量都对应着一个线线性自轭算符性自轭算符。对它后面的函数行施的一种运算。如对它后面的函数行施的一种运算。如,lg,sin 等都等都是算符,通常给字母上加一是算符,通常给字母上加一 或或 表示算符表示算符 一般地一般地 ,即,即 不对易不对易 AB BA0A,BAB BA0若
37、若 ,即,即 对易对易 A,B1212()AAA结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程122121A(A)Addd2()( )ixixixixdeie dxei e dxdxxdx 左端左端 2()()ixixixixdeiedxei edxdxxdx 右端右端 所以所以 算符为厄米算符算符为厄米算符A例例2 证明证明为为 Adidx*Adidx 1ixe设设则有则有*1ixe结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程2/2TpmETV力学量力学量经典力学表达式经典力学表达式算算 符符位置位置x动量的动量的x轴分量轴分量p
38、x角动量的角动量的z轴分量轴分量动能动能势能势能能量能量xpiixxxx2222222()2Tmxyz VV22( , , )2HV x y zm VzyxMxpyp()zMxyiiyx 量子力学中的常用算符量子力学中的常用算符2/2TpmETV2h结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.4.3 本征态、本征值和本征态、本征值和Schrdinger方程方程 若某一力学量若某一力学量 A 的算符的算符 作用于某一状态函数作用于某一状态函数 后,等后,等于某一常数于某一常数 a 乘以乘以 ,即,即 那么对那么对 所描述的这个微观体系的状态,其力学量所描述的这
39、个微观体系的状态,其力学量 A 具具有确定的数值有确定的数值a,a 称为力学量算符称为力学量算符 的的本征值本征值, 称为称为A的的本征态或本征波函数本征态或本征波函数,上式称为,上式称为A的的本征方程本征方程。AAaA结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 Schrdinger方程是体系能量算符的本征方程,是方程是体系能量算符的本征方程,是量子力学中一个基本方程。量子力学中一个基本方程。 前面已知体系的总能量为前面已知体系的总能量为E = T+V,其对应的其对应的Hamilton算算符为符为: 所以所以Schrdinger方程的形式为方程的形式为 ,这里
40、,这里E为为体系体系的总能的总能 量量, 为为体系的波函数体系的波函数。22222222222HVVmxyzm HE222VEm 定态定态SchrSchrdingerdinger方程为方程为结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程例例3. . 中那个是算符中那个是算符 的本征函数?如果是本征的本征函数?如果是本征函数,本征值是多少?函数,本征值是多少? 2cos ,xx eddxcossindxxdx 222xxdeedx 解:解:不是不是是,本征值为是,本征值为-2-2那么对于算符那么对于算符 呢?呢?22ddx结构化学课程结构化学课程化学与化工学院化学与
41、化工学院结构化学课程结构化学课程Aa*Aa同取共轭 (A)da dad *(A)dadad(A)(A )(A)ddd由厄米算符定义式 adad 因此 a=a* ,即 a 必为实数(只有实数的共轭才与其自身相等)。 A. 厄米算符本征值是实数厄米算符本征值是实数 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程B. 厄米算符本征函数系构成正交归一化的完备集厄米算符本征函数系构成正交归一化的完备集 正交归一性正交归一性: : 0, 1, ijijijd 时,正交时,归一ijijd ij 称为克罗内克尔称为克罗内克尔得尔塔得尔塔(Kronecker delta) 记记号。
42、号。ij的值的值要么为要么为0,要么为,要么为1。 对氢原子波函数,必然存在对氢原子波函数,必然存在 和111ssd 120ssd 例例结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程完备性完备性: 厄米算符本征函数系的完备性是厄米算符本征函数系的完备性是指任一与该函数系指任一与该函数系服从同样边界条件的合格波函数服从同样边界条件的合格波函数可以表示成它们的可以表示成它们的线性组合,即线性组合,即 1122iinnicccc 体系的任何状态体系的任何状态均可以用各本征函数的迭加来表示。均可以用各本征函数的迭加来表示。结构化学课程结构化学课程化学与化工学院化学与化工学
43、院结构化学课程结构化学课程 222n h8ml电子的动能值是例例4:已知一电子运动的波函数为已知一电子运动的波函数为 ,求电子,求电子运动的动能值。运动的动能值。2sinnxll2222222222sin222 sin8kn xEnmm xlln hn xmlll 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.4.4 态叠加原理态叠加原理 若若 1 1, , 2, n为某一微观体系可能的状态,由它们线性组合所得为某一微观体系可能的状态,由它们线性组合所得 的的也是该体系可能存在的状态,即也是该体系可能存在的状态,即 1122iinnicccc式中c c1 1,
44、 ,c2, cn为线性组合常数, 状态中各个 i出现的几率为|ci|2 。*22A()A() A iiijjijijiiiijiiiadccdc cdc adc a 显然,体系在状态显然,体系在状态 时,平均值时,平均值 是是 的权重平均值。的权重平均值。 aia由非本征态力学量的平均值公式可得由非本征态力学量的平均值公式可得结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程求其线性组合求其线性组合12sin()lx l1122cc22112211222211221122222121122()H()()ccccdc Ec EEc Ec EccccdE22sin(2)l
45、x l一维势箱粒子:一维势箱粒子:E1 E2的平均能量的平均能量例例5结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.4.5 泡里(泡里(Pauli)不相容原理)不相容原理 微观粒子除作空间运动外还作自旋运动,包括自微观粒子除作空间运动外还作自旋运动,包括自旋在内的全同微观粒子的完全波函数,在任意两粒子旋在内的全同微观粒子的完全波函数,在任意两粒子间交换坐标时(包括空间及自旋坐标),对于间交换坐标时(包括空间及自旋坐标),对于(自旋量子数为零或整数)(自旋量子数为零或整数),而对而对(自旋量子数为半整数)(自旋量子数为半整数)。 在同一个原子轨道或分子轨道上,最
46、多只能容在同一个原子轨道或分子轨道上,最多只能容纳两个电子,这两个电子的自旋状态必须相反。或纳两个电子,这两个电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据同一轨道。者说两个自旋相同的电子不能占据同一轨道。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.5.1一维势箱中运动的粒子一维势箱中运动的粒子 一维势箱中粒子一维势箱中粒子是指一个质是指一个质量为量为m的粒子,在一维直线上局的粒子,在一维直线上局限在一定范围限在一定范围0l内运动,势能内运动,势能函数的特点如图所示。函数的特点如图所示。 金属中的自由电子、化学中的金属中的自由电子、化学中的离域键电
47、子等,可近似按一维势离域键电子等,可近似按一维势箱模型处理。箱模型处理。 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程222222222( , )( )( , )2( )( , )( , )2Hx y zV xx y zmxyzV xx y zEx y zmHE(1)Schrodinger方程及其解方程及其解 222( )( )( )2dV xxExm dx结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程箱外:箱外:222222( )( )( )2( )() ( )2dV xxExm dxdxExm dx ( )V x 222( )(
48、)2( )dxExm dxx 2221( )( ) ( )0 2dxxmxdx结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程箱内:箱内:( )0V x 222222( )( )( )2( )( )2dV xxExm dxdxExm dx2222(0( )dmExxdx22200mEss其特征根方程为其特征根方程为 2mEsi 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程通解为通解为: 1222( )exp()exp() (cossin )(cossin )22 cossinimEimExAxBxAiBimExmExcc 根据边界条件
49、确定方程的特解根据边界条件确定方程的特解 因为因为 必须是连续的,边界两点波函数为必须是连续的,边界两点波函数为0,即,即 (0)= (l)=0,故有,故有 220mEl(l )c sin2mEln1,2,3n 2228n hEml2si(n) xncxl12(0)cos(0)sin(0)0cc10c 20c 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程22222002220212( )( )sin(1 cos)2121 (sin)1222lllolnnxx dxcxdxcx dxlllncxxc lnl 根据归一化条件确定归一化系数根据归一化条件确定归一化系数
50、 22cl2( )sinnn xxll2228nn hEmln=1,2,3,结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程(2)求解结果的讨论)求解结果的讨论 p 能级公式表明,束缚态微观粒子的能量是不连续的,此即微能级公式表明,束缚态微观粒子的能量是不连续的,此即微观体系的观体系的能量量子化效应能量量子化效应。相邻两能级的间隔为。相邻两能级的间隔为212(21)8nnhEEEnmlp 能级差与粒子质量成反比,与粒子运动范围的平方成反比能级差与粒子质量成反比,与粒子运动范围的平方成反比. .这这表明量子化是微观世界的特征。表明量子化是微观世界的特征。p 对于给定的
51、对于给定的n n,E En n 与与l l2 2 成反比成反比, , 即粒子运动范围增大,能量即粒子运动范围增大,能量降低,这正是化学中大降低,这正是化学中大键离域能的来源键离域能的来源。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 能级公式表明体系的最低能量不能为零,由于箱内势能级公式表明体系的最低能量不能为零,由于箱内势能能V=0,这就意味着粒子的,这就意味着粒子的最低动能恒大于零最低动能恒大于零,这个结果,这个结果称为称为零点能效应零点能效应。最低动能恒大于零意味着粒子永远在。最低动能恒大于零意味着粒子永远在运动,即运动是绝对的。运动,即运动是绝对的。在分
52、子振动光谱、同位素效应在分子振动光谱、同位素效应和热化学数据理论计算等问题中和热化学数据理论计算等问题中,零点能都有实际意义。零点能都有实际意义。2228nn hEml2128hEml结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程+-n=4n=3n=2n=1n=3n=2n=1+-E1E2E3E41(x)2(x)32(x)4(x)42(x)22(x)12(x)3(x)概概率率密密度度 n=42( )sinnn xxll波波函函数数注意注意(1)波函数可取正负零,为零的点成为节点。波函数可取正负零,为零的点成为节点。 (2)节点数()节点数(n-1)越多能量越高。)越
53、多能量越高。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程lxnlnsin21*dnn 0*dmnmn 试证明一维势箱中试证明一维势箱中 1与与 2的归一性,以及二者之间的归一性,以及二者之间的正交性的正交性。进一步说明这些本征函数的全体构成了正进一步说明这些本征函数的全体构成了正交归一化的集合。交归一化的集合。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程( )( )xPxcx002sin(sin)0llxxnnn xdn xpPdidxlldxl动量无确定值,求其平均值动量无确定值,求其平均值220002( )sin2lllnnn
54、n xlxxdxx dxxdxll( )( )xxcx坐标无确定值,求其平均值坐标无确定值,求其平均值结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程222222222222222222( )sinsin ( )( )44xnnndn xn hn xpxdxlllllnhnhxxll 222221228xpn hETmvmml动量平方与能量具有确定值。动量平方与能量具有确定值。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程 能量量子化,零点能效应能量量子化,零点能效应和和粒粒子没有运动轨道只有几率分布子没有运动轨道只有几率分布,这,这些
55、现象是经典场合所没有的,只有些现象是经典场合所没有的,只有量子场合才得到的结果,一般称为量子场合才得到的结果,一般称为“量子效应量子效应”。 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程1.5.2 三维势箱中运动的粒子三维势箱中运动的粒子 势能函数势能函数xyzabcV(x,y,z)=0箱内箱外及箱壁2222222()( , , )( , , )2x y zEx y zmxyzSchrodinger方程方程结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程( , , )( ) ( ) ( )x y zX x Y y Z zxyzEEEE
56、令令2222222()()2xyzXYZXYZXYZEEEXYZmxyz故有:故有: 22222221112()0 xyzXYZmEEEXxYyZz同除同除XYZ,并进行整理:,并进行整理: 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程222222222202020 xyzXmEXxYmEYyZmEZz2222( )sin 8xxxnnxn hX xEaama2222( )sin 8yyynnyn hY yEbbmb2222( )sin 8zzznnzn hZ zEccmc8( , , )sinsinsinxyzyxzn n nnnnx y zxyzabcabc
57、2222222()8yxznnnhEm abc 描写一个三维空间状态需用三个量子数,以后讨论电子的空间波函描写一个三维空间状态需用三个量子数,以后讨论电子的空间波函数(空间轨道)时,也用到数(空间轨道)时,也用到量子数量子数 n, , l, m。 结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程三维无限深正方体势阱中粒子的简并态三维无限深正方体势阱中粒子的简并态 此时出现多个状态对应同一能级的情况,这些状态称为此时出现多个状态对应同一能级的情况,这些状态称为简简并状态并状态。若若a=b=c,势阱成为正方体,能级成为,势阱成为正方体,能级成为Ehmannnxyz222
58、228() 同一能级对应的状态数为同一能级对应的状态数为简并度简并度。简并通常与对称性有关,。简并通常与对称性有关,对称性降低往往会使简并度降低甚至完全解除。对称性降低往往会使简并度降低甚至完全解除。结构化学课程结构化学课程化学与化工学院化学与化工学院结构化学课程结构化学课程求立方势箱能量求立方势箱能量 的可能的运动状态数。的可能的运动状态数。22128hEma解:根据能级公式,立方势箱的态分布具有如下形式:解:根据能级公式,立方势箱的态分布具有如下形式:共有共有11个微观状态个微观状态111E211112121EEE122212221EEE113131311EEE222E例例7三维无限深正方体势阱中粒子的波函数三维无限深正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学大三(建筑学)建筑结构选型基础测试题及答案
- 2025年大学行政管理(行政管理学原理)试题及答案
- 2025年中职应急救援技术(基础急救)试题及答案
- 2025年高职艺术设计(平面设计基础)试题及答案
- 2025年大学林学(树木学)试题及答案
- 2025年大学四年级(材料工程)复合材料制备试题及答案
- 2025年高职运动与休闲(运动项目管理)试题及答案
- 2025年中职煤炭综合利用技术(煤炭加工)试题及答案
- 2025年中职第一学年(会计事务)基础账务处理试题及答案
- 2025年高职水文地质与工程地质勘查(岩土工程勘察)试题及答案
- 2026广西出版传媒集团有限公司招聘98人备考题库新版
- 2025年厦门大学生命科学学院工程系列专业技术中初级职务人员公开招聘3人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2026届广东省广州市高三上学期12月零模英语试题含答案
- EBER原位杂交检测技术专家共识解读(2025)课件
- 健身房塑胶地面施工方案
- NCCN临床实践指南:肝细胞癌(2025.v1)
- GB/T 191-2025包装储运图形符号标志
- 中医适宜技术竞赛方案
- 2024年人才工作会议主持词(9篇)
- 冷渣机漏渣及冒灰原因分析及处理方案 106p
- 《关键人才识别》课件
评论
0/150
提交评论