版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1七年级数学下册三角形全等的条件七年级数学下册三角形全等的条件 ASA AAS冀教冀教1.什么样的图形是全等三角形?什么样的图形是全等三角形?2.判定两个三角形全等要具备什么判定两个三角形全等要具备什么条件条件? 第1页/共18页 有三边对应相等的两个三角形全等。边边边:第2页/共18页 有两边和它们夹角对应相等的两个三角形全等。边角边:第3页/共18页 一张教学用的三角形硬纸板不小心一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形同样大小的新教具?能恢复原来三角形的原貌吗?的原貌吗?怎么办?可以帮帮我吗
2、?第4页/共18页CBEAD第5页/共18页 先任意画出一个ABC,再画一个A/B/C/,使A/B/=AB, A/ =A, B/ =B 。把画好的A/B/C/剪下,放到ABC上,它们全等吗?探究1第6页/共18页已知:任意已知:任意 ABC,画一个,画一个 A/B/C/,使使A/B/AB, A/ =A, B/ =B :画法:画法:2、在、在 A/B/的同旁画的同旁画DA/ B/ =A , EB/A/ =B, A/ D,B/E交于点交于点C/。1、画画A/B/AB; A/B/C/就是所要画的三角形。就是所要画的三角形。问:通过实验可以发现什么事实?问:通过实验可以发现什么事实?第7页/共18页
3、有两角和它们夹边对应有两角和它们夹边对应相等的两个三角形全等相等的两个三角形全等( (简写成简写成“角边角角边角”或或“ASAASA”)。)。探究反映的规律是:第8页/共18页例题讲解:例题讲解:例例1.已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于相交于 点点O,AB=AC,B=C。 求证:求证:BD=CE 证明证明 :在:在ADC和和AEB中中A=A(公共角)(公共角)AC=AB(已知)(已知)C=B(已知)(已知)ACD ABE(ASA)AD=AE(全等三角形的对应边相等)(全等三角形的对应边相等)又又AB=AC(已知)(已知) BD=CEDBEAOC第9页/
4、共18页1.如图,如图,1=2,3=4 求证:求证:AC=AD证明:证明:ABD=1803 ABC=1804而而3=4(已知)(已知)ABD=ABC在在ABD和和ABC中中1=2(已知(已知 )AB=AB (公共边)(公共边) ABD=ABC (已知(已知 ) ABD ABC(ASA ) AC=AD (全等三角形对应边相等(全等三角形对应边相等) 巩固练习巩固练习CADB1234第10页/共18页 例 已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=BC,B= C(如图),求证:BD=CE.ABCDEO AC = AB (已知)A = A (公共角)C = B (已知) ACD与A
5、BE 全等(ASA)证明:在ACD和ABE中AD=AE(全等三角形的对应边相等) 又AB=AC(已知)BD=CE(等式的性质)第11页/共18页 在ABC和DEF中,A=D, B=E ,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF第12页/共18页第13页/共18页例题讲解:例题讲解:例例1.已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于相交于 点点O,AD=AE,B=C。 求证:求证:BD=CE 证明证明 :在:在ADC和和AEB中中A=A(公共角)(公共角)AD=AE(已知)(已知)C=B(已知)(已知)ACD ABE(A
6、AS) AB=AC (全等三角形的对应边相等)(全等三角形的对应边相等)又又 AD=AE ( 已知)已知) BD=CEDBEAOC第14页/共18页知识应用知识应用1.如图,要测量河两岸相对的两点如图,要测量河两岸相对的两点A,B 的距离,可以在的距离,可以在AB的垂线的垂线BF上取两点上取两点 C,D,使,使BC=CD,再定出,再定出BF的垂线的垂线 DE,使,使A, C,E在一条直线上,这时在一条直线上,这时 测得测得DE的长就是的长就是AB的长。为什么?的长。为什么?ABCDEF第15页/共18页2.已知,如图,已知,如图,1=2,C=D 求证:求证:AC=AD 在在ABD和和ABC中中1=2 (已知)(已知)C=D (已知)(已知)AB=AB(公共边)(公共边)ABD ABC (AAS)AC=AD (全等三角形对应边相等)(全等三角形对应边相等)证明:证明:C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球船艉驱动行业调研及趋势分析报告
- 2025-2030全球无线表面肌电传感器行业调研及趋势分析报告
- 2025-2030全球聚酰亚胺挠性覆铜板行业调研及趋势分析报告
- 2025-2030全球兽医眼科手术设备行业调研及趋势分析报告
- 服装行业融资居间合同模板
- 二零二五年度文化中心平面设计施工合同
- 2025年度专业体育教练聘用合同协议书4篇
- 矿产资源运输保险合同优化
- 酒店建设项目运营合同
- 电力储能系统建设投资合同
- Unit6AtthesnackbarStorytimeDiningwithdragons(课件)译林版英语四年级上册
- 2023年四川省公务员录用考试《行测》真题卷及答案解析
- 机电一体化系统设计-第5章-特性分析
- 2025年高考物理复习压轴题:电磁感应综合问题(原卷版)
- 雨棚钢结构施工组织设计正式版
- 医院重点监控药品管理制度
- 2024尼尔森IQ中国本土快消企业调研报告
- 2024年印度辣椒行业状况及未来发展趋势报告
- 骨科医院感染控制操作流程
- 铸铝焊接工艺
- 《社区康复》课件-第六章 骨关节疾病、损伤患者的社区康复实践
评论
0/150
提交评论