版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1Boundary Element Method (BEM)Zoran IlievskiWednesday 28th June, 2006HG 6.96 (TU/e)2Talk Overview The idea of BEM and its advantages The 2D potential problem Numerical implementation3Idea of BEM4Idea of BEM5Advantages of BEM1) Reduction of problem dimension by 1Less data preparation time.Easier to c
2、hange the applied mesh. Useful for problems that require re-meshing.6Advantages of BEM2) High Accuracy Stresses are accurate as there are no approximations imposed on the solution in interior domain points. Suitable for modeling problems of rapidly changing stresses.7Advantages of BEM3) Less compute
3、r time and storage For the same level of accuracy as other methods BEM uses less number of nodes and elements.8Advantages of BEM4) Filter out unwanted information. Internal points of the domain are optional. Focus on particularinternal region. Further reduces computer time.9Advantages of BEMReductio
4、n of problem dimension by 1.High Accuracy.Less computer time and storage.Filter out unwanted information and so focus on section of the domain you are interested in.BEM is an attractive option.10The 2D potential problem Where can BEM be applied? Two important functions. Description of the domain. Ma
5、pping of higher to lower dimensions. Satisfaction of the Laplace equations and how to deal with a singularity. The boundary integral equation (BIE)11The 2D potential problemWhere can BEM be applied?Where any potential problem is governed by a differential equationthat satisfies the Laplace equation.
6、 (or any other behavior that has a related fundamental solution)e.g. The following can be analyzed with the Laplace equation: fluid flow, torsion of bars, diffusion and steady state heat conduction.12The 2D potential problem022222yx.2The Laplace equation for 2Dyx,Laplacian operatorPotential function
7、Cartesian coordinate axis13The 2D potential problemTwo important functions.)(2PQ The function describing the property under analysis. e.g. heat. (Unknown)The fundamental solution of the Laplace equation. (These are well known)14The 2D potential problem),(1ln21),(QprQp),(1ln21),(QprQp Fundamental sol
8、ution of the 2DLaplace equation for a concentrated source point at p is22),(QpQpyYxXQprWhereDescription of the domain15The 2D potential problemMapping of higher to lower dimensionsdnndAA22Boundary of any domain is of a dimension 1 less than of the domain.In BEM the problem is moved from within the d
9、omain to its boundary.This means you must, in this case, map Area to Line.The well known Greens Second Identity is used to do this.,nnhave continuous 1st and 2nd derivatives.unknown potential at any point.known fundamental solution at any point.unit outward normal.derivative in the direction of norm
10、al.16The 2D potential problemSatisfying the Laplace equationThe unknown 02will satisfy everywhere in the solution domain.The known fundamental solutionsatisfies02everywhere except the point p where it is singular.),(1ln21),(QprQp22),(QpQpyYxXQpr17The 2D potential problemHow to deal with the singular
11、itydnndAAA22Surround p with a small circle of radius , thenexamine solution as 0New area is (A A )New boundary is ( + ) Within area (A A)0202&The left hand side of the equation is now 0 and the right is now 18The 2D potential problemHow to deal with the singularitydnndnn0The second term must be eval
12、uated and to do this letddrnrrn21.And use the fact that19The 2D potential problemHow to deal with the singularity. 1)2(211ln12120dndnn02/11)(PCEvaluated with p in the domain,on the boundary (Smooth surface),and outside the boundary.2)(PCFor coarse surfaces20The 2D potential problemThe boundary integ
13、ral equation)()(),()(),()()(12QdQQPKQdnQPKPPC),(),(),(),(21QPQPKnQPQPKWhere K1 and K2 are the known fundamental solutions and are equal to2)(PC21The 2D potential problemBEM can be applied where any potential problem is governed by a differential equation that satisfies the Laplace equation. In this
14、case the 2D form. A potential problem can be mapped from higher to lower dimension using Greens second identity.Shown how to deal with the case of the singularity point.Derived the boundary integral equation (BIE)()(),()(),()()(12QdQQPKQdnQPKPPC22Numerical Implementation Dirichlet, Neumann and mixed
15、 case. Discretisation Reduction to a form Ax=B23Numerical ImplementationDirichlet, Neumann and mixed case.)()(),()(),()()(12QdQQPKQdnQPKPPCThe unknowns of the above are values on the boundary and aren,Dirichlet ProblemNeumann Problemnis given every point Q on the boundary.is given every point Q on t
16、he boundary.Mixed case Either are given at point Q24Numerical ImplementationDiscretisationNjjjijNjjjijijjdQPKQdQPKnQP111221),()(),()()(Unknowns25Numerical ImplementationDiscretisationNjijjNjijjiKQKnQP111221)()()(jjiijdQPKKj),(22jjjiijdQPKK),(11UnknownsLet26Numerical ImplementationNjjijjNjijijnQKQK121211)()(jiwhenQPji)()(BzAx 27Numerical ImplementationBzAx cAx Dirichlet ProblemBzc Neumann ProblemMixed caseMatrix A and vector C are knownMatrix B and vector C are known Unknowns and knowns can be separated in to same form as above28Numerical Implementation As each point p in the doma
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年玩具产品项目可行性研究报告
- 2024-2029年中国光纤扩束器行业市场发展监测及投资潜力预测报告
- 2024年智能流量计市场分析报告
- 2024-2026年中国客户关系系统市场竞争格局及投资战略规划报告
- 中国标准非标准件黑项目投资可行性研究报告
- 山西货架项目可行性研究报告
- 2025年聚乙烯外护筐项目可行性研究报告
- 【可行性报告】2025年石棉相关行业可行性分析报告
- 2025毕业生签订劳动合同
- 2024-2030年中国印刷片材行业发展潜力预测及投资战略研究报告
- 2025年中国烟草总公司湖北省公司校园招聘227人高频重点提升(共500题)附带答案详解
- 2024版带货主播电商平台合作服务合同范本3篇
- 2025公司资产划转合同
- 2024-2030年中国铝汽车紧固件行业销售规模与盈利前景预测报告
- 广东省清远市2023-2024学年高一上学期期末质量检测物理试题(解析版)
- 2024-2025学年人教版数学五年级上册期末检测试卷(含答案)
- 《外盘期货常识》课件
- 【MOOC】土力学-西安交通大学 中国大学慕课MOOC答案
- 医院医保科工作总结
- 2024-2025学年译林版八年级英语上学期重点词汇短语句子归纳【考点清单】
- 2024年企业采购部年终总结及今后计划(3篇)
评论
0/150
提交评论