小学简便计算方法总结_第1页
小学简便计算方法总结_第2页
小学简便计算方法总结_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、卓立教育-小学数学简便计算方法总结、拆分法:为了方便计算或能使计算变得简便,在进行计算时,会将某些数字拆分开来再进行重新组 合,这样的方法叫拆分法。例题 1: 101 + 75= (100+ 1)+ 75=100+ 75+ 仁 176 例题 2: 125X 32=125X 8X 4=1000X 4=4000例题 3: 999X 999+ 1999=999X 999+( 1000+ 999)【将 1999 拆分】=999X 999+ 999+ 1000 去括号,并使用交换律交换位置=999X 999+ 999X 1+ 1000 为使用乘法分配律,故将原式变形,给拆分出来的999乘以1=999 (

2、 999+ 1)+ 1000 使用 乘法分配律,提取 999=999000+ 1000=1000000例题 4: 33333 X 66666+ 99999 X 77778此题数字中最为特殊的是 77778,我们发现这个数字加上 22222正好等于100000,所以最好能 从其他数字中拆分出来22222。经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222 X 3。原式=33333X 3X 22222+ 99999X 77778=99999 X 22222+ 99999 X 77778=99999 (22222+ 77778)=00例题 5: 13000- 125=13X

3、1000十 125=13X 8=104 例题6=1988X 10001 - 2000 X 100011998=1998-2000,即汕)|卜二、归零法:为了方便计算或能使计算变得简便,在进行计算时,要在计算式中加上一个数再减去同一 个数的方法叫归零法。(即等于加了个“ 0所以叫归零法)1111 111 111例题1: 2+ 4 +8+1召 + 32 + 64 +1281111 1 1 1 1 _ 1=2 + 4+*+16 + 击+扁+五 + 1站 128丄在上式中,我们加了一个I,又减去了一个I,等于没加没减。这样一来,除最后一项之外, 每一项与前一项相加就会等于前一项。贝U:1 127=1

4、128_ 12三、凑整法:为了方便计算或能使计算变得简便,在进行计算时,要通过“凑的方式让计算式中出现 整百、整千、整万等数字。例题:99999+ 9999+ 999+ 99+ 9=(99999 + 1) + ( 9999+ 1) + ( 999 + 1) + ( 99+ 1) + ( 9+ 1) _S(加了 5个1,所以减去5) =100000+ 10000+ 1000+ 100+10 5=111110 5=111105四、代入法:为了方便计算或能使计算变得简便,在进行计算时,把一些相同项用字母代替的方法。1 1 11 1 111111 1例题:科+7X2+ 3+1 +5X疋1 1 1 1计

5、算式共由4个项组成,仔细观察我们可以发现,每一项中都有 亍+丁,我们就可以设彳+;=a,那么原式 就可以变换为:1 1 1 1?+ ax a+气一2 + a+片x a相同加项和减项相抵消1=|五、通分与约分:为了方便计算或能使计算变得简便,在进行计算时,巧妙运用通分找最小公倍数 和约分找最大公约数。例题:2 9X0 + 1 x第一步,带分数变假分数77=77 宁 9 +11 9X0 +石 9=77X+11 9xo+石 X交叉约分1 1=9+ 2X 5+4 =12仃六、倒数法:即“除以一个数,等于乘以这个数的倒数例题:+十 +X 250%1除以等于乘以4=X 4X=x 10七、运算定律及法那么:

6、即运用各类运算定律及法那么使计算变的简便的方法选取常见、常用的几个,举 例说明。1乘法分配律 ax b + c =ac+ be概念记忆:一个数乘以两个数的和,等于这个数分别与这两个数相乘之后的和或: 两个数分别与第三个数相乘之后的和,等于这两个数的和乘以第三个数777例题 1: 777 十 777-* 首先,带分数变假分数,只变换不计算结果777 x 778+777 =777宁冷777 *778 + 1778为了出现乘法分配律,给最后一个 777乘以1777 x 77 + 777 x 1=777*7肚=777 宁倒数法变换77877* 一、.、(777与777相约分)约分778例题 2: 33

7、333 X 66666+ 99999 X 77778此题数字中最为特殊的是 77778,我们发现这个数字加上 22222正好等于100000,所以最好能 从其他数字中拆分出来22222。经过观察,我们发现只有66666可以拆出,所以将66666拆分成22222 X 3。原式=33333X 3X 22222+ 99999X 77778=99999 X 22222+ 99999 X 77778 可以使用乘法分配律=99999 (22222+ 77778)乘法分配律=00(2) 乘法父换律a+ b= b+ a概念记忆:两个数或多个数连续相加,交换加数的位置相加,和不变。女口: 125+83+75+1

8、7=125+75+83+17=300(3) 乘、除法交换律XX*=*x *x *=9X 4X =(4) 减法性质a-b-c=a- (b+c)概念记忆:一个数连续减去几个数,等于这个数减去后几个数的和。(5) 除法性质a* b* c=(* X c)概念记忆:一个数连续除以几个数,等于这个数除以后几个数的积。(6) 乘、除法运算性质A:乘法:两个因数相乘,其中一个因素扩大假设干倍,要想使积不变,另外一个因数就应该 缩小相同的倍数(记忆方法:乘法,你扩我缩)例题:X 345 X- 123X 将上式中、345、全部变化成= X X X使用乘法分配律提取 =X()=x 0 =0B:除法:两个数相除,被除

9、数缩小假设干倍,要想使商不变,除数也应该缩小相同的倍 数;两个数相除,除数缩小假设干倍,要想使商不变,被除数也应该 缩小相同的倍数;(记忆方法:除法,你缩我也缩) 例题:略(7) 完全平方和公式:(a+ b)x( a+ b)=却+ 2ab+h概念记忆:两个数和的平方,等于这两个数的平方和加上他们乘积的2倍例题:(75+4)X( 75+4)=阳 + 4X 75X 2+ =5625+600+16=6241(8) 完全平方差公式:(a b)x( a b)=同:2ab+Z概念记忆:两个数和的平方,等于这两个数的平方和减去他们乘积的2倍例题:(75-4)X( 75-4) =7 4X 75X 2+屮=56

10、25-600+16=6041(9) 平方差公式:(a+ b)X( a b) = -h概念记忆:两个数的和乘以他们的积,等于这两个数的平方的差。例题 1: 71 X 79= (75-4)X( 75+4)=5625-16=5609例题 2: 201 屮013?+ 999X 274+ 6274=(2021+2021)X( 2021 2021) +999X 274+6274=4027+999X 274+6000+274 =4027+999X 274+274X 1+6000=4027+274X( 999+1) +6000 =4027+274000+6000=284027八、数字关系:运用数字之间的关系而

11、使计算变简单的方法,需要牢记(1) 125和& 25和4等等例1、九、裂项法:裂项法在近年的小升初考题中出现次数较为频繁,题型难度不一。对初学的同学来说容易 产生畏惧心理,但是只要了解此种题型的特点及解题思路, 再结合一定量的练习,还是可以掌握的 先看一道最根底的裂项法题目:1 1 1 1 1 1 1 1 1从这道题目我们可以总结出裂项法题目的根本特点,主要如下:1、 分数加法题(也有少量变形为分数减法或加减混合计算);2、不易通分;3、 分母为有规律的乘法或乘积的形式。(比方此题也可以表现为:1111111111 6 12 20 30矗56 72 90,就更为隐蔽一些)如果能在各种各样的计算

12、题中准确的识别出这种题型,就可以优先考虑使用裂项法进行计算,不仅能少走弯路,也可以增强信心【解题思路】此题的右侧可以向右无限延伸,比方可以一直加到12007 2021,这样,如果不能通过各加数之间的相互约减,很难进行计算,所以可以进行拆分裂项,制造减法。以丄为例:3 414 34311I1丄,将各项都进行类似的处理,可以得3 43 43 43 434到如下算式:19。,加减消去后剩下:1例 2、-J1_J12 55 88 1111 1414 1717 20解:仿照上例,将2 5我们把这一步叫做调整系数.11111原式=-3 2558拆分为 口,但注意到分数值实际上扩大了 3倍。可以给每个分数乘

13、以-,2 531111131720)_3 (220)20。由此可知, 算。例3、解:原式=1 12丄1丄.1丄12 20 110=1 10 1 1 丄2 6 121201110=10 (1 1 丄2 6 12110)当分母的乘法不是连续自然数相乘的形式时,通过调整系数,我们一样可以进行裂项法的计1 51119891092 61220. 90110这道题看上去和前面两题区别较大,但实际上,每个分数都可以改写成1 m的形式。只要抓住原n式为分数加法、不易通分、分母为有规律的乘积这几大特点。最终还是确信可以通过裂项法解决问题。现在题目又回到了前面提到的最根底的题型了吧!1 1 1例 4、.1 2 3

14、2 3 498 99 100这是一道分母有3个乘数的分数加法题,对照前面所说的三大特点,它是不是全都符合呢但是我们怎么样去拆分它呢显然组成分子的减法算式中,被减数和减数都应该来自下面的乘数中, 不然就得不到该如何选择呢经过试验形如1的单位分数,但对于1 来说,2- 1,3- 1, 3 2似乎都符合条件,n1 2 3可知只有选择3 1的拆分方法,并调整系数,才能保证前后拆分项之间的连贯性解:原式=1 -2 1100 9898 99100)10098 99 100小2 I 99 100_ 4949)19800198 99血例 5、1+七+厂匕+冷3 41 2 3 4. 1000分析:这道题目似,不

15、属于裂项法的范畴,因为似乎分母不是乘积的形式。而是一系列的连续自然数的和。但联想到等差数列的求和公式,1 2 3 4(1 4) 44勺,你会惊奇的发现,题目又变成2了裂项法!而这次的系数调整同样特别,只需要将分子中的2提取出来就行了。2) 2+(1 3)2 2+ +3(14) 4(1 1000) 1000=2X (122 3123 4.1 11+ + 一+223 34121000 10011 13 3999 =2X (1-)=1 1001 1001十、其他简便计算方法:(1)同头尾合十每一个算式的两个乘数的十位上的数字相同,且两个乘数的个位上的数字之和是10,我们把这类算式称为“同头尾合十,如

16、42和48。这类算式的巧算方法是:两个乘数个位上的数字相乘的积作积 的后两位数,积前面的数是这两个乘数的首位数字与首位数字加1的积。如果这两个乘数个位上的数字相乘的积不满10,那么十位上用0占位。例题1 : 4x 48=42 X( 4+1)X 100+2 X 8=4X 5X 100+16=2021(2)同尾头合十两个乘数十位上的数字之和是10,我们把这类题称为“同尾头合十。这类题的巧算方法是:两个乘 数的个位上的数字相乘的积作积的后两位数,乘积前面的数是这两个乘数首位上的数字的乘积再加个位上的数字之和。例题 1 : 38X 78例题 2: 29X 89=(3X 7+8)X 100+8X 8=

17、(2X 8+9)X 100+9X 9=2900+64=2500+81=2964=2581(3) 一个数与11相乘,所得的结果就是将这个数首位上的数字与末位上的数字分别作为积的最高位上的数字和最低位上的数字,再依次将这个数由个位加起的相邻两位数字的和写在十位上、百位上哪一位上满十就向前一位进一,我们称之为“两头一拉,中间相加例题 1: 36X 11=396 例题 2: 352X 11=3872(4) 两个个位和十位数字相互交换位置的数字相减。结果等于组成这两个数字最大的数与最小的数 的差乘以9的积。例题 1: 71-17= (7-1 )X 9=54例题 1: 73-37= (7-3)X 9=36

18、(5) 一个数与5相乘,我们可以在这个数的末尾添上一个0,然后再除以2就得到这个数与5的乘 积,我们称之为“添0折半女口: 124X 5=1240- 2=620(6) 数列求和法:禾U用等差数列公式,求一组数字的和、等差数列的项数以及等差数列各项的和。例题 2: 51 X 59=5X( 5+1 )X 100+1X 9=5X 6X 100+9=3009公式公式* +( n-1)X d2: n=(【等差数列第门项=首项+(项数-1)x公差】公式3: * =(小)十d 1+ )X n十2【等差数列项数=(第n项-首项)吩差+1】【等差数列项数和=(首项+第 n项)x项数十2例题:1+2+3+4+5+97+98+99+100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论