下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 1.2.3 三角函数的诱导公式(第1课时) 一、教学目标1知识与技能 (1)能够理解借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。 (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。 2过程与方法 (1)经历由几何直观探讨数量关系式的过程,培养数学发现能力和概括能力。 (2)通过对诱导公式的探求和运用,培养化归能力,提高分析问题和解决问题的能力。 3情感、态度、价值观 (1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。 二、教学重点与难
2、点教学重点是,探求a的诱导公式。a,a与的诱导公式在小结a的诱导公式发现过程的基础上,在教师的引导下由学生推出。教学难点是,对角a的任意性的理解。a,a与角a终边位置的几何关系。以及发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“路线图”。 三、教学方法与教学手段 问题教学法、合作学习法,多媒体课件四、教学过程 (一) 问题提出 如何将任意角三角函数求值问题转化为0360角三角函数求值问题。 【问题1】求390的正弦、余弦值. 设计意图哈尔莫斯说:问题是数学的心脏。数学教学应当从问题开始。教师把数学教学的锚,抛在学生最近发展区内,为教学的展开提供知识和
3、思维的生长点。这个问题虽然是一个特殊的问题,但是将为后面特殊问题一般化作出铺垫。 一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有: sin(a+k360) = sin, cos(a+k360) = cos, (kz) tan(a+k360) = tan。 (公式一) 三角函数看重的就是终边位置关系. 这组公式用弧度制可以表示成 sin(a+2k) = sin, cos(a+2k) = cos, (kz) tan(a+2k) = tan。 运用这组诱导公式,我们可以把任意角转化为0360角,所以这组公式称为“诱导公式”。 (二)尝试推导 如何利用对称推导出角- a 与角
4、a的三角函数之间的关系。由三角函数定义,我们知道,终边相同的角的同一三角函数值一定相等。反过来呢?如果两个角的同一三角函数值相等,它们的终边一定相同吗?比如说: 【问题2】你能找出和30角正弦值相等,但终边不同的角吗? 角- a 与角a 的终边关于y轴对称,故有: sin( -a) = sin a, cos( -a) = - cos a,tan( -a) = - tan a。(公式二) 研究路线:角间关系对称关系坐标关系三角函数值间关系设计意图引导学生从关注坐标到关注角的终边之间的对称关系,从而将对称作为三角函数的一种研究方法使用,将上述研究的结果一般化。 思考1请大家回顾一下,刚才我们是如何
5、获得这组公式(公式二)的?设计意图引导反思,阶段概括,不断总结经验,以便迎战新的任务。 (三)自主探究如何利用对称推导出+ a,- a与a的三角函数值之间的关系。 【问题3】两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?角 + a 与角a 终边关于原点o对称,有:sin( + a) = -sin a, cos( + a) = -cos a, tan( + a) = tan a。(公式三) 角-a 与角a 的终边关于x轴对称,有:sin(-a) = -sin a, cos(-a) = cos a, tan(-a) = -tan a。 (公式四)设计意图将上述研究的方法一般化
6、.同时通过“你准备怎么研究”等元认知提示语,引导学生学会在解决问题时,合理地制订解题计划。 (四)简单应用 例1 求下列各三角函数值: (1) sinp ; (2) cos(-60); (3)tan(-855)。 (请你和你的同桌互相出一些需要利用诱导公式一四解决的简单三角函数求值问题) (追问学生你是怎么想的?从而引出思考2) 思考2 由例1和大家自己编制的问题,你能自己归纳一下利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤吗?设计意图 阶段概括用公式的方法,感悟在解决问题的过程中,如何合理的使用这几组公式。当然,公式的熟练使用不是一节课就可以完成的,需要学生在今后的学习中不断体会,不断总结和概括,进而将诱导公式内化到自己的知识结构中去。 (五)回顾反思 【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会? 具体地,可以用知识树表示如下: 设计意图开放式小结,不同的学生有不同的学习体验和收获。 (六)分层作业 1、阅读课本,体会三角函数诱导公式推导过程中的思想方法; 2、必做题 课本23页 13 3、选做题 (1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗? (2)角和角的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程清包合同
- 2024年新修订版:合作双方权益保障合同
- 2024年医疗救护车辆租赁合同
- 2024年承包耕地种植协议
- 2024年房屋预订金支付协议
- 2023年机械密封项目评价分析报告
- 2024年数据服务许可与保密合同
- 2024年度物流金融服务合同
- 2024年快递企业绿色环保运营合作协议
- 《好老师》观后感参考7篇
- GB∕T 25341.1-2019 铁路旅客运输服务质量 第1部分:总则
- 毕业设计(论文)-人形机器人设计
- 八年级语文 课外现代文阅读专项训练(50篇含答案)
- 不同种类氨基酸和糖的美拉德反应
- 《动物疾病防治》课程整体教学设计方案-禽病防治
- 美世国际职位评估法IEP四因素10维度法
- 大地构造学(中国大地构造概要)课件
- 薄膜制备技术(PVD)(溅射)解析课件
- 化工设计概论(第二版)完整版课件(全)
- 新药药效学研究方法和技术要求
- 资料员岗位培训ppt课件(PPT 36页)
评论
0/150
提交评论