2020届全国大联考高三第四次联考数学(理)试题(解析版)(总17页)_第1页
2020届全国大联考高三第四次联考数学(理)试题(解析版)(总17页)_第2页
2020届全国大联考高三第四次联考数学(理)试题(解析版)(总17页)_第3页
2020届全国大联考高三第四次联考数学(理)试题(解析版)(总17页)_第4页
2020届全国大联考高三第四次联考数学(理)试题(解析版)(总17页)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020届全国大联考高三第四次联考数学(理)试题一、单选题1已知集合,则( )ABCD【答案】B【解析】分别求解集合再求并集即可.【详解】因为,所以.故选:B【点睛】本题考查集合的运算与二次不等式的求解以及指数函数的值域等.属于基础题.2若直线与圆相交所得弦长为,则( )A1B2CD3【答案】A【解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.3抛物线的准线方程是,则实数( )ABCD【答案】C【解析】根据准线的方程写出抛

2、物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.4已知,则p是q的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】B【解析】根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.5一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD【答案】D【解析

3、】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.6已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D2【答案】D【解析】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点

4、到直线的距离.属于基础题.7关于函数在区间的单调性,下列叙述正确的是( )A单调递增B单调递减C先递减后递增D先递增后递减【答案】C【解析】先用诱导公式得,再根据函数图像平移的方法求解即可.【详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.8在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是( )A平面BC当时,平面D当m变化时,直线l的位置不变【答案】C【解析】根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别

5、是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.9已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,则的面积为( )ABCD【答案】A【解析】根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.10在中,内角A

6、,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D16【答案】C【解析】根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,由正弦定理得,又,又,又,.,由余弦定理可得,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.11存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( )ABCD【答案】D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.

7、故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.12已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、分别为侧棱,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为( )ABCD【答案】D【解析】如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三

8、棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.二、填空题13若双曲线的两条渐近线斜率分别为,若,则该双曲线的离心率为_.【答案】2【解析】由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14已知在等差数列中,前n项和为,则_.【答案】39【解析】设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为

9、:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点与抛物线交于、两点和椭圆交于、两点,为抛物线准线上一动点,满足,当面积最大时,直线的方程为_.【答案】【解析】根据均值不等式得到,根据等号成立条件得到直线的倾斜角为,计算得到直线方程.【详解】由椭圆,可知,(当且仅当,等号成立),直线的倾斜角为,直线的方程为.故答案为:.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力.16已知三棱锥,是边长为4的正三角形,分别是、的中点,为棱上一动点(点除外),若异面直线与所成的角为,且,则_

10、.【答案】【解析】取的中点,连接,取的中点,连接,直线与所成的角为,计算,根据余弦定理计算得到答案。【详解】取的中点,连接,依题意可得,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,因为,所以直线与所成的角为,设,则,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.三、解答题17在数列和等比数列中,.(1)求数列及的通项公式;(2)若,求数列的前n项和.【答案】(1),(2)【解析】(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即

11、可.【详解】解:(1)依题意,设数列的公比为q,由,可知,由,得,又,则,故,又由,得. (2)依题意.,则,-得,即,故.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.18如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.【答案】(1)见解析(2)见解析【解析】(1) 连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC

12、的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直线平面EFG. (2)在中,由余弦定理得,即,解得,由勾股定理逆定理可知,因为侧面底面ABCD,由面面垂直的性质定理可知平面ABCD,所以,因为底面ABCD是菱形,所以,因为,所以平面SDB.【点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.19设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.【答案】(1)(2)【解析】(1)代入计算即可.(2) 设直线AB的方程为,再联立直线与抛

13、物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线过点,所以,所以,抛物线的方程为 (2)由题意知直线AB的斜率存在,可设直线AB的方程为,.因为,所以,联立,化简得,所以,所以,解得,所以.【点睛】本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.20已知在四棱锥中,平面,在四边形中,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.【答案】(1)见解析;(2)【解析】(1)连接,证明,得到面,得到证明.(2)以,所在直线分别为,轴建立空间直角坐标系,为平面的法向量,平面的一个法向量为,计算

14、夹角得到答案.【详解】(1)连接,在四边形中,平面,面,面,又面,又在直角三角形中,为的中点,面,面,.(2)以,所在直线分别为,轴建立空间直角坐标系,设为平面的法向量,令,则,同理可得平面的一个法向量为.设向量与的所成的角为,由图形知,二面角为锐二面角,所以余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.21已知函数.(1)求的单调区间;(2)讨论零点的个数.【答案】(1)见解析(2)见解析【解析】(1)求导后分析导函数的正负再判断单调性即可.(2) ,有零点等价于方程实数根,再换元将原方程转化为,再求导分析的图像数形结合求解即可.【详解】(1)的定义域为

15、,当时,所以在单调递减;当时,所以在单调递增,所以的减区间为,增区间为.(2),有零点等价于方程实数根,令则原方程转化为,令,.令,当时,当时,.如图可知当时,有唯一零点,即有唯一零点;当时,有两个零点,即有两个零点;当时,有唯一零点,即有唯一零点;时,此时无零点,即此时无零点.【点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.22已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.(1)求椭圆的方程;(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.【答案】(1);(2)是,定点坐标为或【解析】(1)根据相切得到,根据离心率得到,得到椭圆方程.(2)设直线的方程为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论