概率的基本性质PPT学习教案_第1页
概率的基本性质PPT学习教案_第2页
概率的基本性质PPT学习教案_第3页
概率的基本性质PPT学习教案_第4页
概率的基本性质PPT学习教案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1 概率的基本性质概率的基本性质 )BAAB(或 一、事件的关系和运算:一、事件的关系和运算: B BA A 如图:如图: 例例. .事件事件C C1 1 = =出现出现1 1点点 发生,则事件发生,则事件 H =H =出现的出现的 点数为奇数点数为奇数 也一定会发生,所以也一定会发生,所以 1 HC 注:注:不可能事件记作不可能事件记作 ,任何事件都包括不可能事件。,任何事件都包括不可能事件。 (1 1)包含包含关系关系 一般地,对于事件一般地,对于事件A A与事件与事件B B,如果事件,如果事件A A发生,则发生,则 事件事件B B一定发生,这时称一定发生,这时称事件事件B B包含事

2、件包含事件A A(或称(或称事事 件件A A包含于事件包含于事件B B), ,记作记作 第1页/共21页 (2 2)相等相等关系关系 B B A A 如图:如图: 例例. .事件事件C C1 1=出现出现1 1点点 发生,则事件发生,则事件D D1 1=出现的点数不出现的点数不 大于大于11就一定会发生,反过来也一样,所以就一定会发生,反过来也一样,所以C C1 1=D=D1 1。 事件的关系和运算:事件的关系和运算: BAAB且一般地,对事件一般地,对事件A A与事件与事件B B,若,若 , 那么称那么称事件事件A A与事件与事件B B相等相等,记作,记作A=B A=B 。 第2页/共21页

3、 (3 3)并并事件(事件(和和事件)事件) 若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生或事件发生或事件B B发生,则发生,则 称此事件为事件称此事件为事件A A和事件和事件B B的的并事件并事件(或(或和事件和事件),), 记作记作 。ABAB ()或或 B B A A 如图:如图: AB 例例. .若事件若事件K=K=出现出现1 1点或点或5 5点点 发生,则事件发生,则事件C C1 1 = = 出现出现1 1点点 与事件与事件C C5 5 = =出现出现 5 5 点点 中至少有一个会中至少有一个会 发生,则发生,则K . . 事件的关系和运算:事件的关系和运算: 第3页/

4、共21页 (4 4)交交事件(事件(积积事件)事件) 若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生且事件发生且事件B B发生发生 ,则称此事件为事件,则称此事件为事件A A和事件和事件B B的的交事件交事件(或(或积积 事件事件),记作),记作 。ABAB ()或或 B B A A 如图:如图: BA 事件的关系和运算:事件的关系和运算: 15 MCC 例例. .若事件若事件 M=M=出现出现1 1点且点且5 5点点 发生,则事件发生,则事件C C1 1 = = 出现出现1 1点点 与事件与事件C C5 5 = =出现出现5 5点点 同时发生,则同时发生,则 . . 第4页/共2

5、1页 (5 5)互斥互斥事件事件 若若 为不可能事件(为不可能事件( ),那么称事件),那么称事件A A 与事件与事件B B互斥互斥,其含义是:,其含义是:事件事件A A与事件与事件B B在任何一次试在任何一次试 验中都不会同时发生验中都不会同时发生。 ABAB AB 如图:如图: 例例. .因为事件因为事件C C1 1=出现出现1 1点点 与事件与事件C C2 2=出现出现2 2点点 不可能不可能 同时发生,故这两个事件互斥。同时发生,故这两个事件互斥。 事件的关系和运算:事件的关系和运算: 第5页/共21页 (6 6)互为)互为对立对立事件事件 若若 为不可能事件,为不可能事件, 为必然事

6、件,那么称事为必然事件,那么称事 件件A A与事件与事件B B互为对立事件互为对立事件,其含义是:,其含义是:事件事件A A与事件与事件B B在在 任何一次试验中有且仅有一个发生任何一次试验中有且仅有一个发生。 ABAB A AB B 如图:如图: 例例. . 事件事件G =G =出现的点数为偶数出现的点数为偶数 与事件与事件H =H =出现的点出现的点 数为奇数数为奇数 即为互为对立事件。即为互为对立事件。 事件的关系和运算:事件的关系和运算: 第6页/共21页 互斥事件与对立事件的区别与联互斥事件与对立事件的区别与联 系系: : 互斥事件是指事件互斥事件是指事件A A与事件与事件B B在一

7、次试验在一次试验 中不会同时发生,其具体包括三种不同的情形中不会同时发生,其具体包括三种不同的情形 :(:(1 1)事件)事件A A发生且事件发生且事件B B不发生;(不发生;(2 2)事件)事件 A A不发生且事件不发生且事件B B发生;(发生;(3 3)事件)事件A A与事件与事件B B同同 时不发生时不发生. . 对立事件是指事件对立事件是指事件A A与事件与事件B B有且仅有一有且仅有一 个发生,其包括两种情形;(个发生,其包括两种情形;(1 1)事件)事件A A发生且发生且 B B不发生;(不发生;(2 2)事件)事件B B发生事件发生事件A A不发生不发生. . 对立事件是互斥事件

8、的特殊情形。对立事件是互斥事件的特殊情形。 第7页/共21页 例题分析:例题分析: 例例1 1 一个射手进行一次射击一个射手进行一次射击, ,试判断下列事件哪些试判断下列事件哪些 是互斥事件是互斥事件? ?哪些是对立事件哪些是对立事件? ? 事件事件A A:命中环数大于:命中环数大于7 7环;环; 事件事件B B:命中环数为:命中环数为1010环;环; 事件事件C C:命中环数小于:命中环数小于6 6环;环; 事件事件D D:命中环数为:命中环数为6 6、7 7、8 8、9 9、1010环环. . 分析:要判断所给事件是对立还是互斥,首分析:要判断所给事件是对立还是互斥,首 先将两个概念的联系

9、与区别弄清楚,互斥事件是指不先将两个概念的联系与区别弄清楚,互斥事件是指不 可能同时发生的两事件,而对立事件是建立在互斥事可能同时发生的两事件,而对立事件是建立在互斥事 件的基础上,两个事件中一个不发生,另一个必发生件的基础上,两个事件中一个不发生,另一个必发生 。 解解:互斥事件有互斥事件有:A和和C、B和和C、C和和D. 对立事件有对立事件有:C和和D. 第8页/共21页 ( ) A.(1) B.(2) (4) C.(3) D.(1) (3) C 第9页/共21页 ; (3)“抽出的牌点数为抽出的牌点数为5的倍数的倍数” 与与“抽出的牌点数大于抽出的牌点数大于9”。 是互斥事件,不是对立事

10、件是互斥事件,不是对立事件 既是互斥事件,又是对立事件既是互斥事件,又是对立事件 不是互斥事件,也不是对立事件不是互斥事件,也不是对立事件 第10页/共21页 【二二】.概率的几个基本性质概率的几个基本性质: (1)任何事件的概率在任何事件的概率在01之间之间,即即 0P(A)1 (2)必然事件的概率为必然事件的概率为1,即即 P(A)=1 (3)不可能事件的概率为不可能事件的概率为0,即即 (4)如果事件如果事件A与事件与事件B互斥互斥,则则 P(AB)=P(A)+P(B) (5)如果事件如果事件B与事件与事件A是是互为对立事件互为对立事件,则则 P(B)=1-P(A) P(A)=0 第11

11、页/共21页 例例2 2 如果从不包括大小王的如果从不包括大小王的5252张扑克牌中随机张扑克牌中随机 抽取一张,那么取到红心(事件抽取一张,那么取到红心(事件A A)的概率是)的概率是 0.250.25,取到方块(事件,取到方块(事件B B)的概率是)的概率是0.250.25,问:,问: (1 1)取到红色牌(事件)取到红色牌(事件C C)的概率是多少?)的概率是多少? (2 2)取到黑色牌(事件)取到黑色牌(事件D D)的概率是多少?)的概率是多少? 分析:事件分析:事件C=ABC=AB,且,且A A与与B B互斥,因互斥,因 此可用互斥事件的概率和公式求解,事件此可用互斥事件的概率和公式

12、求解,事件C C与与 事件事件D D是对立事件,因此是对立事件,因此P(D)=1-P(C)P(D)=1-P(C) 解解:(1)P(C)=P(A)+ P(B)=0.25+0.25=0.5; (2)P(D)=1-P(C)=1-0.5=0.5. 第12页/共21页 例例3 3 甲,乙两人下棋,和棋的概率为甲,乙两人下棋,和棋的概率为1/21/2,乙,乙 获胜的概率为获胜的概率为1/31/3,求:,求: (1 1)甲获胜的概率;()甲获胜的概率;(2 2)甲不输的概率)甲不输的概率。 分析:甲乙两人下棋,其结果有甲胜,和棋分析:甲乙两人下棋,其结果有甲胜,和棋 ,乙胜三种,它们是互斥事件。,乙胜三种,

13、它们是互斥事件。 解解(1)“甲获胜甲获胜”是是“和棋或乙胜和棋或乙胜” 的对立事件,所以甲获胜的概率是的对立事件,所以甲获胜的概率是P=1- 1/2-1/3=1/6。 (2)解法)解法1,“甲不输甲不输”看作是看作是“甲胜甲胜”, “和棋和棋”这两个事件的并事件所以这两个事件的并事件所以 P=1/6+1/2=2/3。解法。解法2,“甲不输甲不输”看作是看作是 “乙胜乙胜”的对立事件,的对立事件,P=1-1/3=2/3。 第13页/共21页 (1) P(AB)=P(A)+P(B) =0.24+0.28=0.52。 (2) 因为它们是互斥事件,所以至少射因为它们是互斥事件,所以至少射 中中7环的

14、概率是环的概率是 0.24+0.28+0.19+0.16=0.87 第14页/共21页 年降水量 (mm) 100,150) 150,200) 200,250) 250,300) 概率0.120.250.160.14 (1)求年降水量在)求年降水量在100,200)()(mm)范围范围 内的概率;内的概率; (2)求年降水量在)求年降水量在150,300)()(mm)范范 围内的概率。围内的概率。 P=0.12+0.25=0.37 P=0.25+0.16+0.14=0.55 第15页/共21页 例例4 4 袋中有袋中有1212个小球,分别为红球、黑球、个小球,分别为红球、黑球、 黄球、绿球,从

15、中任取一球,得到红球的概率为黄球、绿球,从中任取一球,得到红球的概率为1/31/3 ,得到黑球或黄球的概率是,得到黑球或黄球的概率是5/125/12,得到黄球或绿球的,得到黄球或绿球的 概率也是概率也是5/125/12,试求得到黑球、得到黄球、得到绿球,试求得到黑球、得到黄球、得到绿球 的概率各是多少?的概率各是多少? 分析:利用方程的思想及互斥事件、对立分析:利用方程的思想及互斥事件、对立 事件的概率公式求解事件的概率公式求解 解:从袋中任取一球,记事件解:从袋中任取一球,记事件“摸到红球摸到红球” 、“摸到黑球摸到黑球”、“摸到黄球摸到黄球”、“摸到绿球摸到绿球”为为A A 、B B、C

16、C、D D, 则有则有 P(BC)=P(B)+P(C) =5/12;5/12; P(CD)=P(C)+P(D) =5/12;5/12; P(BCD)=P(B)+P(C)+P(D)=1-P(A) =1-1/31/3=2/3;2/3; 解的解的P(B)=1/41/4,P(C)=1/61/6,P(D)=1/41/4. 答答: :得到黑球、黄球、绿球的概率分别是得到黑球、黄球、绿球的概率分别是 1/4,1/6,1/4. 1/4,1/6,1/4. 第16页/共21页 例例5. 某公务员去开会,他乘火车、轮船、某公务员去开会,他乘火车、轮船、 汽车、飞机去的概率分别为汽车、飞机去的概率分别为0.3、0.2

17、、0.1 、0.4, (1)求他乘火车或乘飞机去的概率;)求他乘火车或乘飞机去的概率; (2)求他不乘轮船去的概率;)求他不乘轮船去的概率; (3)如果他乘某种交通工具去开会的概)如果他乘某种交通工具去开会的概 率为率为0.5,请问他有可能是乘何种交通工,请问他有可能是乘何种交通工 具去的?具去的? 第17页/共21页 解:记解:记“他乘火车去他乘火车去”为事件为事件A,“ 他乘轮船去他乘轮船去”为事件为事件B,“他乘汽车去他乘汽车去 ”为事件为事件C,“他乘飞机去他乘飞机去”为事件为事件D, 这四个事件不可能同时发生,故它们彼这四个事件不可能同时发生,故它们彼 此互斥,此互斥, (1)故)故P(AD)=0.7; (2)设他不乘轮船去的概率为)设他不乘轮船去的概率为P,则,则 P=1P(B)=0.8; (3)由于)由于0.5=0.1+0.4=0.2+0.3,故他有,故他有 可能乘火车或乘轮船去,也有可能乘汽可能乘火车或乘轮船去,也有可能乘汽 车或乘飞机去。车或乘飞机去。 第18页/共21页 四、四、课堂小结课堂小结 1.1.概率的基本性质:概率的基本性质: 1 1)必然事件概率为)必然事件概率为1 1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论