版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第8 8章章 图像分割图像分割 知识要点 图像分割的定义及其在图像处理中的地位。图像分割的定义及其在图像处理中的地位。 像素间的关系:像素间的关系: 邻域和连通性。邻域和连通性。 阈值分割技术:阈值分割技术: 全局阈值分割和自适应阈值分割技术。全局阈值分割和自适应阈值分割技术。 边缘检测法:边缘检测法: 梯度算子、拉普拉斯算子、拉普拉斯梯度算子、拉普拉斯算子、拉普拉斯- -高斯算子、方向高斯算子、方向 算子、坎尼算子和边缘跟踪。算子、坎尼算子和边缘跟踪。 区域检测法。区域检测法。 霍夫变换。霍夫变换。 8.1 8.1 概概 述述 u 8.1.1 图像分割的目的和任务图像分割的目的和任务 u
2、图像处理的重要任务就是对图像中的对象进行分析和理解。 u 在图像分析中,输出的结果是对图像的描述、分类或其他的某种 结论 。 u 图像分析主要包括以下几部分内容: u (1)把图像分割成不同的区域,或把不同的目标分开(分割)。即 把图像分成互不重叠的区域并提取出感兴趣目标。 u (2)找出各个区域的特征(特征提取)。 u (3)识别图像中的内容,或对图像进行分类(识别与分类)。 u (4)给出结论(描述、分类或其他的结论)。 图图8.1 目标为飞机的图像目标为飞机的图像 (a)原图像 (b)分割后的图像 8.1.2 图像分割的集合定义图像分割的集合定义 令集合令集合R代表整个图像区域,对代表整
3、个图像区域,对R的图像分割可以的图像分割可以 视为将视为将R分成分成N个满足以下条件的非空子集:个满足以下条件的非空子集: (1) (2)对于所有的对于所有的i和和j,ij ,有,有 ; (3)对于)对于i = 1, 2, , N,有,有P(Ri) = TRUE; (4)对于)对于ij ,有,有P(RiRj) = FALSE; (5)对于)对于i = 1, 2, , N,Ri是连通的区域。是连通的区域。 1 ; N i i RR ij RR n 8.1.38.1.3 图像分割的分类 n根据分割方法的不同,通常有两种分类方法: n(1)根据图像的两种特性进行分割: n根据各个像素点的灰度不连续性
4、进行分割; n根据同一区域具有相似的灰度进行分割。 n(2)根据分割的处理策略不同进行分割: n并行算法,所有的判断和决策可以独立进行; n串行算法,后期的处理依赖前期的运算结果。 l 表表8.1 常见的图像分割算法常见的图像分割算法 分 类 边界 (不连续性) 区域 (相似性) 并行 处理 并行边界类 (边缘检测等) 并行区域类(阈值分割、 聚类等) 串行 处理 串行边界类 (边缘跟踪等) 串行区域类(区域生长、 分裂合并等) 8.2 8.2 像素的邻域和连通性像素的邻域和连通性 1. 4邻域 n对一个坐标为 的像素p,它可以有两个水平和 两个垂直的近邻像素。它们的坐标分别是 n 这四个像素
5、称为p 的4邻域。 n 互为4邻域的像素又称为4连通的。 2. 8邻域 n取像素p四周的8个点作为相链接的邻域点, 除掉p本身外,剩下的8个点就是p的8邻域。 n互为8邻域的像素又称为8连通的 。 ),(yx ) 1,(),1,(), 1(), 1(yxyxyxyx u目标和背景的连通性定义必须取不同,否 则会引起矛盾。 00000 01110 01010 00110 00000 图8.2 目标和背景连通性 【例例8.1】根据4/8连通准则在二值图像中判断 目标。 解:解:应用函数bwlabel可以根据4连通或8连通准则,在 给定的二值图像矩阵BW中寻找目标。程序: BW = 1 1 1 0
6、0 0 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 1 1 0; 1 1 1 0 0 0 0 0; %给定的二值图像矩阵 L4 = bwlabel(BW,4) %根据4连通准则判定目标 L8 = bwlabel(BW,8) %根据8连通准则判定目标 根据4连通准则,得到的 目标是3个: L4 = 1 1 1 0 0 0 0 0 1 1 1 0 2 2 0 0 1 1 1 0 2 2 0 0 1 1 1 0 0 0 3 0 1 1 1 0 0
7、 0 3 0 1 1 1 0 0 0 3 0 1 1 1 0 0 3 3 0 1 1 1 0 0 0 0 0 根据8连通准则,得到目标 是2个: L8 =1 1 1 0 0 0 0 0 1 1 1 0 2 2 0 0 1 1 1 0 2 2 0 0 1 1 1 0 0 0 2 0 1 1 1 0 0 0 2 0 1 1 1 0 0 0 2 0 1 1 1 0 0 2 2 0 1 1 1 0 0 0 0 0 8.3 8.3 图像的阈值分割技术图像的阈值分割技术 n8.3.18.3.1 基本原理 n灰度阈值分割方法。 n若目标和背景具有不同的灰度集合,且两个灰 度集合可用一个灰度级阈值T进行分割。
8、 n这样就可以用阈值分割灰度级的方法在图像中 分割出目标区域与背景区域。 n 设图像为f (x, y) ,其灰度集范围是Z1, ZK ,在 Z1 和ZK 之间选择一个合适的灰度阈值T。 n 图像分割方法可由下式描述:图像分割方法可由下式描述: 这样得到的是一幅二值图像。这样得到的是一幅二值图像。 n 图图8.4给出了利用阈值分割图像的实例。给出了利用阈值分割图像的实例。 n(a)是原图)是原图 n(b)是对应的直方图)是对应的直方图 n(c)是选择分割阈值为)是选择分割阈值为110的结果图。的结果图。 Tyxf Tyxf yxg ),(0 ),(1 ),( (8.1) (a)原图像 (b)直方
9、图 (c)已分割的图像 图8.4 阈值分割 8.3.1 8.3.1 全局阈值分割全局阈值分割 l全局阈值是最简单的图像分割方法。根 据不同的目标,选用最佳的阈值。 l1 1实验法实验法 l需要知道图像的某些特征 l2 2直方图法直方图法 l适用于目标和背景的灰度差较大,直方图 有明显谷底的情况。 l3 3最小误差的方法最小误差的方法 图8.5 直方图阈值分割示意图 图8.6 灰度级分布 8.3.38.3.3 局部阈值分割 l 当照明不均匀、有突发噪声或者背景灰度变化当照明不均匀、有突发噪声或者背景灰度变化 比较大的时候,可以对图像进行分块处理,对比较大的时候,可以对图像进行分块处理,对 每一块
10、分别选定一个阈值进行分割,这种与坐每一块分别选定一个阈值进行分割,这种与坐 标相关的阈值称为自适应阈值的方法。标相关的阈值称为自适应阈值的方法。 l这类算法的时间复杂度和空间复杂度比较大,但是这类算法的时间复杂度和空间复杂度比较大,但是 抗噪声的能力比较强抗噪声的能力比较强 。 l 任何一种分割方法都有其局限性。任何一种分割方法都有其局限性。 l实际的算法只能根据实际情况选择方法和阈值。实际的算法只能根据实际情况选择方法和阈值。 8.4 8.4 图像的边缘检测图像的边缘检测 l8.4.18.4.1 边缘检测的基本原理 l 基于灰度不连续性进行的分割方法。基于灰度不连续性进行的分割方法。 l 图
11、图8.9 几种常见的边缘几种常见的边缘 l 用差分、梯度、拉普拉斯算子及各种高通滤波处理方法对图像用差分、梯度、拉普拉斯算子及各种高通滤波处理方法对图像 边缘进行增强,只要再进行一次门限化的处理,便可以将边缘边缘进行增强,只要再进行一次门限化的处理,便可以将边缘 增强的方法用于边缘检测。增强的方法用于边缘检测。 l 对于一个连续函数对于一个连续函数f (x,y),其在,其在(x,y)处的梯度处的梯度: l 常采用小型模板,然后利用卷积运算来近似,常采用小型模板,然后利用卷积运算来近似, Gx和和Gy各自使用一个模板。各自使用一个模板。 l 1. Roberts1. Roberts算子算子 y
12、f x f G G f y x (8.2) 10 01 01 10 8.4.2 梯度算子 2. Prewitt算子算子 3. Sobel算子算子 u通过算子检测后,还需作二值处理从而找到边界点。通过算子检测后,还需作二值处理从而找到边界点。 u图图8.9给出了利用这三个算子进行边缘检测的不同效果。给出了利用这三个算子进行边缘检测的不同效果。 u这三种模板中,这三种模板中,Sobel算子的检测效果最好。算子的检测效果最好。 101 101 101 111 000 111 101 202 101 121 000 121 (a) 原图像 (b) Roberts算子检测 (c) Prewitt算子检测
13、 (d) Sobel算子检测 【例例8.4】利用梯度算子对图像进行边缘检测。利用梯度算子对图像进行边缘检测。 I = imread(blood1.tif); imshow(I); BW1 = edge(I,roberts); %进行Roberts算子边缘检测,门限值采用默认值 BW2 = edge(I,prewitt); %进行Prewitt算子边缘检测,门限值采用默认值 BW3 = edge(I,sobel); %进行Sobel算子边缘检测,门限值采用默认值 figure,imshow(BW1,); figure,imshow(BW2,); figure,imshow(BW3,); 8.4.
14、3 拉普拉斯算子 l Laplacian是二阶导数算子,也是借助模板来实现的。 l 对模板有一些基本要求: l模板中心的系数为正,其余相邻系数为负,且所有 的系数之和为零。 l 常用的模板有: 010 141 010 010 151 010 图图8.9 二阶导数算子确定边缘位置二阶导数算子确定边缘位置 (a)平滑边缘的二阶算子 (b)斜坡边缘的二阶算子 【例例8.5】Robert、Sobel和和Laplace算子的边缘检测。算子的边缘检测。 (a)Lena图像 (b)Robert算子检测结果 (c)Sobel算子检测结果 (d)Laplace算子检测结果 图8.10 各种算子的检测结果 8.4
15、.4 拉普拉斯拉普拉斯-高斯算子高斯算子 拉普拉斯拉普拉斯-高斯算子(高斯算子(Laplacian of Gaussian, LoG),也称),也称Marr算子。算子。 思想:思想: 先用高斯函数先用高斯函数g(x, y)对图像对图像f (x, y)进行滤波,进行滤波, 再对滤波后的图像进行拉普拉斯运算(再对滤波后的图像进行拉普拉斯运算( 2),), 结果为零的位置即为边缘点的位置。结果为零的位置即为边缘点的位置。 滤波提高了抗噪声的能力,但同时可能使原本滤波提高了抗噪声的能力,但同时可能使原本 比较尖锐的边缘平滑了,甚至无法检测到。比较尖锐的边缘平滑了,甚至无法检测到。 图图8.9 不同微分
16、算子的边缘检测效果不同微分算子的边缘检测效果 (a)原图像 (e)LoG算子检测 8.4.5 Canny 8.4.5 Canny边缘检测算子边缘检测算子 l Canny的主要工作:的主要工作: l推导了最优边缘检测算子。推导了最优边缘检测算子。 l考核边缘检测算子的指标是:考核边缘检测算子的指标是: l低误判率,即尽可能少地把边缘点误认为低误判率,即尽可能少地把边缘点误认为 是非边缘点;是非边缘点; l高定位精度,即准确地把边缘点定位在灰高定位精度,即准确地把边缘点定位在灰 度变化最大的像素上;度变化最大的像素上; l抑制虚假边缘。抑制虚假边缘。 图图8.9 不同微分算子的边缘检测效果不同微分
17、算子的边缘检测效果 (a)原图像 (f)Canny算子检测 l判断一个像素是否为边缘点的条件为: (1)像素)像素(i, j)的边缘强度大于沿梯度方向的的边缘强度大于沿梯度方向的 两个相邻像素的边缘强度;两个相邻像素的边缘强度; (2)与该像素梯度方向上相邻两点的方向差)与该像素梯度方向上相邻两点的方向差 小于小于45; (3)以该像素为中心的)以该像素为中心的33邻域中的边缘强邻域中的边缘强 度的极大值小于某个阈值度的极大值小于某个阈值 。 l Canny算子的检测比较优越,可以减少算子的检测比较优越,可以减少 小模板检测中边缘中断,有利于得到较小模板检测中边缘中断,有利于得到较 完整的边缘
18、。完整的边缘。 lMATLAB程序:程序: I = imread(blood1.tif); imshow(I); BW5 = edge(I, canny); figure,imshow(BW5,); Canny算子边缘检测的结果图算子边缘检测的结果图 8.4.6 8.4.6 方向算子方向算子 l 利用一组模板对图像中的同一像素求卷积,利用一组模板对图像中的同一像素求卷积, 然后选取其中最大的值作为边缘强度,而将然后选取其中最大的值作为边缘强度,而将 与之对应的方向作为边缘方向。与之对应的方向作为边缘方向。 l 相对于梯度算子的优点:相对于梯度算子的优点: l不仅仅只考虑水平和垂直方向,还可以检
19、测其他不仅仅只考虑水平和垂直方向,还可以检测其他 方向上的边缘。方向上的边缘。 l 但计算量将大大增加。但计算量将大大增加。 l 常用的有常用的有8方向方向Kirsch(33)模板,如图)模板,如图8.8 所示,方向间的夹角为所示,方向间的夹角为45。 图图8.13 33 Kirsch算子的八方向模板算子的八方向模板 8.4.8 8.4.8 边缘跟踪边缘跟踪 l 上述方法仅得到处在边缘上的像素点。上述方法仅得到处在边缘上的像素点。 l 噪声和不均匀的照明而产生的边缘间断的影响,噪声和不均匀的照明而产生的边缘间断的影响, 使得经过边缘检测后得到的边缘像素点很少能使得经过边缘检测后得到的边缘像素点
20、很少能 完整地描绘实际的一条边缘。完整地描绘实际的一条边缘。 l 可以在使用边缘检测算法后,接着使用连接方可以在使用边缘检测算法后,接着使用连接方 法将边缘像素组合成有意义的边缘。法将边缘像素组合成有意义的边缘。 l光栅扫描跟踪法: l一种简单的利用局部信息、通过扫描的方式将一种简单的利用局部信息、通过扫描的方式将 边缘点连接起来的方法。边缘点连接起来的方法。 l该跟踪算法采用电视光栅行扫描顺序对遇到的该跟踪算法采用电视光栅行扫描顺序对遇到的 像素进行分析,从而确定其是否为边缘。像素进行分析,从而确定其是否为边缘。 l由于光栅扫描跟踪和扫描方向有关,因此最好由于光栅扫描跟踪和扫描方向有关,因此
21、最好 沿其他方向再跟踪一次沿其他方向再跟踪一次 。 图图8.14 光栅扫描跟踪光栅扫描跟踪 (a)输入图像 (b)阈值化处理 (c)根据阈值进行跟踪 【例例8.6】利用函数对图像进行边缘跟踪。利用函数对图像进行边缘跟踪。 BW = imread(blobs.png); imshow(BW,); s = size(BW); for row = 2:55:s(1) for col=1:s(2) if BW(row,col), break; end end contour = bwtraceboundary(BW, row, col, W, 8, 50,counterclockwise); if(i
22、sempty(contour) hold on; plot(contour(:,2),contour(:,1),g,LineWidth,2); hold on; plot(col, row,gx,LineWidth,2); else hold on; plot(col, row,rx,LineWidth,2); end 图8.16 二值边缘跟踪 (a)二值图像实例 (b)顺时针边缘跟踪结果 8.5 8.5 霍夫变换霍夫变换 l霍夫(Hough)变换方法是利用图像全局 特性而直接检测目标轮廓,将图像的边 缘像素连接起来的常用方法。 l1.基本原理 l点线的对偶性。 l当给定图像空间的一些边缘点,
23、就可以通过 霍夫变换确定连接这些点的直线方程。 2霍夫变换的实现 l实际进行霍夫变换时,要在上述基本方法的 基础上根据图像的具体情况采用一些措施。 l使用极坐标直线方程用以提高精度和速度。 8.5.1 直角坐标系中的霍夫变换直角坐标系中的霍夫变换 图8.17 图像空间和参数空间中点和线的对偶性 图8.1 参数空间中的累加数组 8.5.2 极坐标系中的霍夫变换 图8.19 直线的极坐标表示 图8.20 参数空间对应的曲线 图图8.21 采用霍夫变换提取图像中的直线采用霍夫变换提取图像中的直线 (a)原图像 (b)二值化图像 (c)霍夫变换 8.6 8.6 区域生长法区域生长法 8.6.1 8.6
24、.1 原理和步骤原理和步骤 l 将具有相似性质的像素集合起来构成区域。 l先对每个需要分割的区域找一个种子像素作为生长的 起点 l然后将种子像素周围邻域中与种子像素具有相同或相 似性质的像素合并到这一区域中。 l 将这些新像素当做新的种子像素继续进行上面的 过程,直到再没有满足条件的像素可被包括进来。 这样一个区域就长成了。 在实际应用区域生长法时需要解决三个问题: 选择一组能正确代表所需区域的种子像素; n种子像素的选取常可借助具体问题的特点进行。 确定在生长过程中将相邻像素包括进来的准 则; n生长准则的选取不仅依赖于具体问题本身,也和所 用图像数据的种类有关 , 制定让生长过程停止的条件或规则。 n一般生长过程在进行到再没有满足生长准则需要的 像素时停止。 46522 56502 550 77401 57401 5 51 1 55511 55511 55511 55511 55511 55522 55512 55511 77511 57511 (a)原图像 (b)T=3的生长结果 (c) T=1的生长结果 图8.22 区域生长 8.6.2 8.6.2 生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 认识因特网 课件
- 交通运输综合执法(单多选)练习测试题附答案
- 《清华计量教案》课件
- 专利代理合同范例
- 学校大米采购合同范例
- 山西晋煤集团采购合同范例
- 库存车销售合同范例
- 2024-2025学年新教材高中政治第二单元人民当家作主第五课第1课时人民代表大会:我国的国家权力机关练习含解析部编版必修3
- 卖房后写合同范例
- 低价销售协议合同范例
- 《工程项目审计》课件
- 四年级(上)体育课教案
- 邮储高级练习卷二(第7章-第11章)附有答案
- 2024年巴西机器人工具快换装置市场机会及渠道调研报告
- 基础教育质量提升调研报告(3篇模板)
- JT-T-1116-2017公路铁路并行路段设计技术规范
- 幼儿园中班语言课件:《秋妈妈和果娃娃》
- GB/T 18488-2024电动汽车用驱动电机系统
- DZ∕T 0130-2006 地质矿产实验室测试质量管理规范(正式版)
- 电梯改造工程施工方案
- 数字人文建设方案
评论
0/150
提交评论