计量经济学课件(11)教学资料_第1页
计量经济学课件(11)教学资料_第2页
计量经济学课件(11)教学资料_第3页
计量经济学课件(11)教学资料_第4页
计量经济学课件(11)教学资料_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 The Economic School of Jilin UniversityYu Zhen 1-3 1-4 第一节第一节 “好的好的”模型具有的性质模型具有的性质 p A.C.Harvey(1981) 简约性简约性/Parsimony 可识别性可识别性/Identifiability 拟合优度拟合优度/Good-of-Fit 理论一致性理论一致性/Theoretical Consistency 预测能力预测能力/Predictive Power 1-5 第二节第二节 模型设定偏误的类型模型设定偏误的类型 p 模型设定偏误主要有两大类模型设定偏误主要有两大类: : (1) 关于关于解释变量选

2、取解释变量选取的偏误的偏误:主要包括:主要包括漏选漏选 相关变量(遗漏)相关变量(遗漏)和和多选无关变量(冗余)多选无关变量(冗余) (2) 关于关于模型函数形式选取模型函数形式选取的偏误的偏误。 1-6 2.1 遗漏相关变量:拟合不足遗漏相关变量:拟合不足 p 例如,如果例如,如果“正确正确”的模型为的模型为 而我们将模型设定为而我们将模型设定为 即设定模型时漏掉了一个相关的解释变量即设定模型时漏掉了一个相关的解释变量X3。 这类错误称为这类错误称为遗漏变量偏差遗漏变量偏差( (omitted variable bias)。 * * 动态设定偏误动态设定偏误(dynamic mis-spec

3、ification): :遗遗 漏相关变量表现为对漏相关变量表现为对Y或或X滞后项的遗漏滞后项的遗漏 。 ubbb+= 33221 XXY vXY+= 221 aa 1-7 将正确模型将正确模型 的离差形式的离差形式 代入代入得:得: 遗漏变量偏差的后果遗漏变量偏差的后果 ubbb+= 33221 XXY uubb-+= iiii xxy 3322 = 2 2 2 2 i ii x yx a - += -+ = 2 2 2 2 2 32 32 2 2 33222 2 2 2 2 )( )( i ii i ii i iiii i ii x x x xx x xxx x yx uu bb uubb

4、 a 1-8 如果漏掉的如果漏掉的X3与与X2相关,则上式中的第二项在小样本相关,则上式中的第二项在小样本 下求期望与大样本下求概率极限都不会为零,从而使得下求期望与大样本下求概率极限都不会为零,从而使得 OLS估计量在小样本下有偏,在大样本下非一致估计量在小样本下有偏,在大样本下非一致。 注意:偏离方向由注意:偏离方向由 符号决定符号决定 遗漏变量偏差的后果遗漏变量偏差的后果 (2) 如果如果X3与与X2不相关,则不相关,则a a2的估计满足无偏性与一致性;的估计满足无偏性与一致性; 但这时但这时a a1的估计却是有偏的。的估计却是有偏的。 22332 ()Eabb =+ 1133322 (

5、)()EXXabb=+- 332 b 1-9 精要精要 图图11-1 Net and gross effects of X2 on Y. 1-10 由由 Y=a a1+ a a2X2+v 得得 由由 Y=b b1+b b2X2+b b3X3+ 得得 如果如果X2与与X1相关,显然有相关,显然有 如果如果X2与与X1不相关,也有不相关,也有 遗漏变量偏差的后果遗漏变量偏差的后果 ) ()( 22 baVarVar ) ()( 22 baVarVar - = - = )1 ()( ) ( 22 2 2 2 32 2 3 2 2 2 3 2 2 32x xiiiii i rxxxxx x Var s

6、 sb = 2 2 2 2 )( i x varvar s a 2 a 2 b 2 su X2和和X3的的 相关系数相关系数 1-11 回到例子回到例子10.2 婴儿死亡率的影响因素婴儿死亡率的影响因素 p 两个解释变量下的实证结果:两个解释变量下的实证结果: p 错误设定下的实证结果:错误设定下的实证结果: 1-12 回到例子回到例子10.2 婴儿死亡率的影响因素婴儿死亡率的影响因素 p 遗漏变量作为被解释变量的实证结果:遗漏变量作为被解释变量的实证结果: p 根据回归结果,根据回归结果, 23 0.0056,2.2316bb= -= - 32 0.002562= 22332 ()0.011

7、4Eabb =+ - 1-13 2.2 包含不相关变量偏误:过度拟合包含不相关变量偏误:过度拟合 采用包含不相关解释变量的模型进行估计带采用包含不相关解释变量的模型进行估计带 来的偏误,称为包含无关变量偏误(来的偏误,称为包含无关变量偏误(including irrelevant variable bias)。)。 设设 为正确模型为正确模型 (*) 但却估计了但却估计了 (*) 如果如果 b b3=0,则则( (* * *) )与与( (* *) )相同,因此,可将相同,因此,可将( (*) 式视为以式视为以 b b3=0 为约束的为约束的( (*) )式的特殊形式。式的特殊形式。 vXY+

8、= 221 aa ubbb+= 33221 XXY 1-14 由于所有的经典假设都满足,因此对由于所有的经典假设都满足,因此对 (*) 式进行式进行OLS估计,可得到无偏且一致的估计量。估计,可得到无偏且一致的估计量。 但是,但是,OLS估计量却不具有最小方差性。估计量却不具有最小方差性。 中中X2的方差的方差: 中中X2的方差的方差: 当当X2与与X3完全线性无关时完全线性无关时: 否则:否则: 注意:注意: 包含不相关变量偏误的后果包含不相关变量偏误的后果 )() ( 22 abVarVar ) ()( 22 baVarVar= ubbb+= 33221 XXY - = )1 ( ) (

9、22 2 2 2 32x xi rx varvar s b vXY+= 221 aa = 2 2 2 2 )( i x varvar s a ubbb+= 33221 XXY 3 0b= 3 ()0Eb= 哪种错误更严重?哪种错误更严重? 1-15 2.3 错误函数形式的偏误错误函数形式的偏误 p 当选取了错误函数形式并对其进行估计时,当选取了错误函数形式并对其进行估计时, 带来的偏误称错误函数形式偏误带来的偏误称错误函数形式偏误(wrong functional form bias)。)。 p 容易判断,这种偏误是全方位的。容易判断,这种偏误是全方位的。 p 例如,如果例如,如果“真实真实”

10、的回归函数为的回归函数为 bb eXAXY 21 21 = 却估计线性式却估计线性式 显然,两者的参数具有完全不同的经济含义,且显然,两者的参数具有完全不同的经济含义,且 估计结果一般也是不相同的估计结果一般也是不相同的。 ubbb+= 33221 XXY 1-16 例例11-3 (精要(精要 表表 11-1) U.S. expenditure on imported goods and personal disposable income, 1968-1987. 1-17 例例11-3 (精要(精要 表表 11-1) 线性形式回归结果:线性形式回归结果: 对数线性形式回归结果:对数线性形式回

11、归结果: 1-18 第三节第三节 模型设定偏误的检验模型设定偏误的检验 p 3.1 检验是否含有不相关变量检验是否含有不相关变量 可用可用t 检验与检验与F检验完成。检验完成。 检验的基本思想检验的基本思想: :如果模型中误选了无关如果模型中误选了无关 变量,则其系数的真值应为零。因此,只须变量,则其系数的真值应为零。因此,只须 对无关变量系数的显著性进行检验。对无关变量系数的显著性进行检验。 t t检验检验:检验某检验某1 1个变量是否应包括在模型中;个变量是否应包括在模型中; F F检验检验:检验若干个变量是否应同时包括在模检验若干个变量是否应同时包括在模 型中。型中。 1-19 例例11

12、-4 (精要表(精要表11-2,原始数据,原始数据 表表13-6) 生命预期模型生命预期模型 1-20 例例11-4 (精要表(精要表11-2,原始数据,原始数据 表表13-6) Eviews 演示:演示: 冗余变量检验冗余变量检验 遗漏变量检验遗漏变量检验 1-21 3.2 变量遗漏或函数形式设定偏误检验变量遗漏或函数形式设定偏误检验 3.2.1 残差图示法残差图示法 iu iu i u 1-22 例例11-3 (精要(精要 表表 11-1) 线性形式回归结果:线性形式回归结果: 去掉时间趋势回归结果:去掉时间趋势回归结果: 1-23 例例11-3 (精要(精要 图图 11-2) S1:去掉

13、时间趋势:去掉时间趋势 (11.20)残差残差 ;S2 加时间趋势加时间趋势(11.13)残差残差 1-24 残差序列变化图残差序列变化图 (a)趋势变化)趋势变化 : 模型设定时可能遗模型设定时可能遗 漏了一随着时间的漏了一随着时间的 推移而持续上升的推移而持续上升的 变量变量 (b b)循环变化:)循环变化: 模型设定时可能遗模型设定时可能遗 漏了一随着时间的漏了一随着时间的 推移而呈现循环变推移而呈现循环变 化的变量化的变量 1-25 p 模型函数形式设定偏误时,残差序列呈现正模型函数形式设定偏误时,残差序列呈现正 负交替变化负交替变化 图例:图例:一元回归模型中,真实模型呈幂函数一元回

14、归模型中,真实模型呈幂函数 形式,但却选取了线性函数进行回归。形式,但却选取了线性函数进行回归。 残差序列变化图残差序列变化图 1-26 3.2.2 一般性设定偏误检验:一般性设定偏误检验: RESET 检验检验 p 更准确更常用的判定方法是拉姆齐更准确更常用的判定方法是拉姆齐( (Ramsey) 于于1969年提出的所谓年提出的所谓RESET 检验(检验(regression error specification test)。)。 p 基本思想:基本思想: 如果事先知道遗漏了哪个变量,只需将此变量引入模如果事先知道遗漏了哪个变量,只需将此变量引入模 型,估计并检验其参数是否显著不为零即可;

15、型,估计并检验其参数是否显著不为零即可; 问题是不知道遗漏了哪个变量,需寻找一个替代变量问题是不知道遗漏了哪个变量,需寻找一个替代变量 Z,来进行上述检验。,来进行上述检验。 RESET检验中,采用所设定模型中被解释变量检验中,采用所设定模型中被解释变量Y 的的 估计值估计值 的若干次幂来充当该的若干次幂来充当该“替代替代”变量。变量。 1-27 例如,先估计例如,先估计 Y=a a1+ a a2X2+ v 得得 再根据前面介绍的再根据前面介绍的增加解释变量的增加解释变量的F检验检验来判断是来判断是 否增加这些否增加这些“替代替代”变量。变量。 若仅增加一个若仅增加一个“替代替代”变量,可通过

16、变量,可通过t t 检验检验来判断。来判断。 3.2.2 一般性设定偏误检验:一般性设定偏误检验: RESET 检验检验 uggbb+= 3 2 2 1221 YYXY iu iu 221 XYaa+= 1-28 回到例回到例11-3(精要(精要 图图 11-3,数据,数据11-1) S4:残差:残差 YFF:Yhat 1-29 回到例回到例11-3(精要(精要 图图 11-3,数据,数据11-1) RESET检验结果检验结果 演示演示 Eviews 1-30 例如,例如,在一元回归中在一元回归中,假设真实的函数形式是非线,假设真实的函数形式是非线 性的,将其近似地表示为多项式:性的,将其近似

17、地表示为多项式: p RESET检验用来检验函数形式设定偏误的问题检验用来检验函数形式设定偏误的问题 bbbb+= 3 13 2 12110 XXXY 因此,如果设定了线性模型,就意味着遗漏了相因此,如果设定了线性模型,就意味着遗漏了相 关变量关变量X12、 X13 ,等等。,等等。 在一元回归中,可通过检验在一元回归中,可通过检验(*)式中的各高次幂式中的各高次幂 参数的显著性来判断是否将非线性模型误设成参数的显著性来判断是否将非线性模型误设成 了线性模型。了线性模型。 (*) 3.2.2 一般性设定偏误检验:一般性设定偏误检验: RESET 检验检验 1-31 p 对多元回归对多元回归,非

18、线性函数可能是关于若干个,非线性函数可能是关于若干个 或全部解释变量的非线性,这时可或全部解释变量的非线性,这时可按遗漏变量的按遗漏变量的 程序进行检验程序进行检验。 p 例如,例如,估计估计 Y=b b0+b b1X1+b b2X2+ 但却怀疑真实的函数形式是非线性的。但却怀疑真实的函数形式是非线性的。 ggbbb+= 3 2 2 122110 YYXXY 这时,只需以估计出的这时,只需以估计出的的若干次幂为的若干次幂为“替代替代”变量,变量, 进行类似于如下模型的估计进行类似于如下模型的估计 再判断各再判断各“替代替代”变量的参数是否显著地不为零即可。变量的参数是否显著地不为零即可。 3.2.2 一般性设定偏误检验:一般性设定偏误检验: RESET 检验检验 1-32 p H0:线性模型:线性模型: Y 是是X 的线性函数的线性函数 H1:对数线性模型:对数线性模型:lnY 是是X 或或 lnX 的线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论