高中数学:3.1《直线的倾斜角和斜率》教案(新人教A版必修2)_第1页
高中数学:3.1《直线的倾斜角和斜率》教案(新人教A版必修2)_第2页
高中数学:3.1《直线的倾斜角和斜率》教案(新人教A版必修2)_第3页
高中数学:3.1《直线的倾斜角和斜率》教案(新人教A版必修2)_第4页
高中数学:3.1《直线的倾斜角和斜率》教案(新人教A版必修2)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题:直线的倾斜角和斜率(1)课 型:新授课教学目标:知识与技能1.正确理解直线的倾斜角和斜率的概念2.理解直线的倾斜角的唯一性.3.理解直线的斜率的存在性.4.斜率公式的推导过程,掌握过两点的直线的斜率公式情感态度与价值观1.通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力2.通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神重点与难点: 直线的倾斜角、斜率的概念和公式.教学方法:启发、引导、讨论.教学过程:1.直线的倾斜角的概念

2、我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, 易见,答案是否定的.这些直线有什么联系呢? (1)它们都经过点P. (2)它们的倾斜程度不同. 怎样描述这种倾斜程度的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0.问: 倾斜角的取值范围是什么? 0180.当直线l与x轴垂直时, = 90.因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以

3、用倾斜角来表示平面直角坐标系内的每一条直线的倾斜程度.直线abc, 那么它们的倾斜角相等吗? 答案是肯定的.所以一个倾斜角不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点P和一个倾斜角.2.直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tan当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.由此可知, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.例如, =45时, k = tan45= 1; =135时, k = tan135= tan(180 45

4、) = - tan45= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.3.直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略) 斜率公式: 对于上面的斜率公式要注意下面四点:(1) 当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角= 90, 直线与x轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换; (3)斜率k可以不通过倾斜角而

5、直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角=0,直线与x轴平行或重合.(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到4例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断它们的倾斜角是钝角还是锐角.略解: 直线AB的斜率k1=1/70, 所以它的倾斜角是锐角; 直线BC的斜率k2=-0.50, 所以它的倾斜角是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 及-3的直线a, b, c, l.分析:要画出经过原点的直线a, 只要再找出a上的另外一点M

6、. 而M的坐标可以根据直线a的斜率确定; 或者k=tan=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45的角, 再把所作的这一边反向延长成直线即可.略解: 设直线a上的另外一点M的坐标为(x,y),根据斜率公式有 1=(y0)(x0),所以 x = y可令x = 1, 则y = 1, 于是点M的坐标为(1,1).此时过原点和点M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)5练习: P86 1. 2. 3. 4.课堂小结:(1)直线的倾斜角和斜率的概念(2) 直线的斜率公式.课后作业: P89 习题3.1 1

7、. 2. 3.4课后记:课题:直线的倾斜角和斜率(2)课 型:习题课教学目标:1.进一步加深理解直线的倾斜角和斜率的定义2.已知直线的倾斜角,会求直线的斜率 3.已知直线的斜率,会求直线的倾斜角4.培养学生分析探究和解决问题的能力.教学重点:直线的倾斜角和斜率的应用教学难点:斜率概念理解与斜率公式的灵活运用教学过程1复习:1)说出倾斜角和斜率的概念,它们都反映了直线的什么牲特征?2) 斜率的计算公式是什么?2.巩固练习:1)已知直线的倾斜角,口答直线的斜率:(1) 0;(2)60;(3) 90;()1502).直线经过原点和点(1,1),则它的倾斜角是 3).过点P(2,m)和Q(m,4)的直

8、线的斜率等于1,则m的值为( )A.1 B.4 C.1或3 D.1或44).已知A(2,3)、B(1,4),则直线AB的斜率是 .5).已知M(a,b)、N(a,c)(bc),则直线MN的倾斜角是 .6).已知O(0,0)、P(a,b)(a0),直线OP的斜率是 .7).已知,当时,直线的斜率 = ;当且时,直线的斜率为 3例题分析:例1.若三点,共线,求的值解:说明:本题旨在让学生了解斜率也可研究直线的位置关系,为下节课的学习打基础例2如果直线经过A(1,2m)、B(2,)二点,求直线的斜率K的取值范围。例3若直线的斜率为函数例4.已知两点A(3,4)、B(3,2),过点P(2,1)的直线与

9、线段AB有公共点.求直线的斜率k的取值范围.( k1或k3)4提高练习1.若直线过(2,3)和(6,5)两点,则直线的斜率为 ,倾斜角为 2.已知直线l1的倾斜角为1,则l1关于x轴对称的直线l2的倾斜角2为_.3已知两点A(x,2),B(3,0),并且直线AB的斜率为,则x= 4斜率为2的直线经过(3,5)、(a,7)、(1,b)三点,则a、b的值是( )A.a=4,b=0 B.a=4,b=3 C.a=4,b=3 D.a=4,b=35已知两点M(2,3)、N(3,2),直线l过点P(1,1)且与线段MN相交,则直线的斜率k的取值范围是( ) A.k或k4 B.4k C. k4 D.k4归纳小

10、结:解题时,要重视数学思想方法的应用.作业布置:完成全优设置相关练习.课后记:课题:两条直线的平行与垂直课 型:新授课教学目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用教学难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题教学过程:(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对

11、于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90,另一条直线的倾斜角为0,两直线互相垂直(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有

12、什么关系?首先研究两条直线互相平行(不重合)的情形如果L1L2(图1-29),那么它们的倾斜角相等:1=2(借助计算机, 让学生通过度量, 感知1, 2的关系)tg1=tg2即 k1=k2 反过来,如果两条直线的斜率相等: 即k1=k2,那么tg1=tg2由于01180, 0180,1=2又两条直线不重合,L1L2结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果k1=k2, 那么一定有L1L2; 反之则不一定.下面我们研究两条直线垂直的

13、情形如果L1L2,这时12,否则两直线平行设21(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有1=90+2因为L1、L2的斜率分别是k1、k2,即190,所以20 , 可以推出: 1=90+2 L1L2结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1k2 = -1, 那么一定有L1L2; 反之则不一定.例题分析:例1 已知A(2,3), B(-4,0), P(-3,1), Q(-1

14、,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.解: 直线BA的斜率k1=(3-0)/(2-(-4)=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3)=0.5,因为 k1=k2=0.5, 所以 直线BAPQ.例2.已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. 例3已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6)=2/3, 直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为 k1k2 = -1 所以 ABPQ.例4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论