下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基本不等式与余弦定理综合求解三角形面积的最值探究基本不等式与余弦定理综合求解三角形面积的最值探究建水县第二中学: 贾雪光 从最近几年高考试题的考查情况看,解三角形部分的考查中主要是对用正、余弦定理来求解三角形、实际应用问题, 这两种常见考法中,灵活应用正余弦定理并结合三角形中的内角和定理,大边对大角,等在三角形中进行边角之间的相互转化,以及与诱导公式特别是、的联系是关键。于是多数教师在复习备考过程中,往往都会将大量的时间和精力花在对正余弦定理的变形,转化,变式应用上,当然这也无可厚非,但是我在高考备考复习教学中发现了这样一类题目,如: 1、在锐角ABC中,a, b, c分别为内角A, B, C
2、的对边,且,求ABC的面积的最大值;2、已知向量与共线,其中A是ABC的内角,(1)求角A的大小;(2)若BC=2,求ABC的面积S的最大值。3、ABC中,a, b, c分别为内角A, B, C的对边,向量,(1)求角A的大小;(2)若是判断当取得最大值时ABC的形状。面对这样的问题,我们如何来引导学生很自然的过度,用一种近乎水到渠成的方法来求解呢?实际上我们在教学和学习的过程中往往会忽略一个很明显的问题,那就是余弦定理与基本不等式的综合,如果我们在讲授正余弦定理的时候能在引入正课时多下一点功夫,我们就会有意外的收获哦。我在教学中是这样处理的:实际上在余弦定理中我们总有这样一组公式:, , 同
3、时在基本不等式中我们总有这样一组公式:, ,在三角形中各边都是正数,所以上面三个式子在a、 b是三角形的三边时总是成立的,如果我们将两组公式综合后会发现这样的一组公式即:, 于是我们就有方程等式,得到了一组不等式,而在涉及到最值得求解时,我们常用的处理方法是,一求函数值域;二、导函数;三、基本不等式即均值定理;但是前两种方法显然都不可能用于求解上面两个题目类型的求解,于是在涉及到与解三角形有关的三角形的面积的最大值时我们就只能考虑用均值定理了,自然也就要用到上面我们推导得出的这一组公式罗。于是我没有:例1:在锐角ABC中,a, b, c分别为内角A, B, C的对边,且,求ABC的面积的最大值
4、。 解析:由已知条件有即所以知道2A=解得A=,同时由于、知即有:也就是有 同时又因为于是有:即ABC的面积的最大值是例2:已知向量与共线,其中A是ABC的内角,(1)求角A的大小;(2)若BC=2,求ABC的面积S的最大值。解析:由两向量共线知:即:也就是说有辅助角公式可知即有解得角,又由于:、知即有:也就是有 同时又因为于是有:即ABC的面积的最大值是3、ABC中,a, b, c分别为内角A, B, C的对边,向量,(1)求角A的大小;(2)若是判断当取得最大值时ABC的形状。解析:(1)由解得所以(2)在ABC 中且所以有即有当且仅当时取等号,此时有所以当ABC面积最大时,三角形式正三角形。从以上三个例子中我们可以发现,在解三角形的过程中,如果涉及到要求三角形面积的最大值时,可以考虑余弦定理与基本不等式综合,用基本不等式来构造不等关系,从而求解最值,以上是我在教学实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年黑龙江c1客运资格证模拟考试题下载什么软件
- 2024年徐州办理客运从业资格证考试题和答案
- 吉首大学《律师法学》2021-2022学年期末试卷
- 吉首大学《电子商务物流管理》2021-2022学年第一学期期末试卷
- 《机加工艺方案设计与实施》考试卷及答案
- 吉林艺术学院《影视特效合成》2021-2022学年第一学期期末试卷
- 吉林艺术学院《视觉艺术机构管理》2021-2022学年第一学期期末试卷
- 酒吧装修保密协议书范本模板
- 2024年供暖系统承揽合同范本
- 吉林师范大学《中国传统文化概论》2021-2022学年第一学期期末试卷
- 因孩子上学房子过户协议书
- 部编版四年级语文上册课内阅读复习试题含答案全套
- 土壤学-土壤分类和调查课件
- 幼儿园课程审议制度
- 高中生物-特异性免疫(一)教学课件设计
- GB/T 42631-2023近岸海洋生态健康评价指南
- 酒旅餐饮商家直播间通用话术大全10-46-16
- 中国民族民俗:白族三道茶
- 自动扶梯与自动人行道2023版自行检测规则
- TD-T 1044-2014 生产项目土地复垦验收规程
- 违法建筑处置法律解读培训PPT
评论
0/150
提交评论