2020版高考数学三轮复习小题专题练(四)解析几何、立体几何文_第1页
2020版高考数学三轮复习小题专题练(四)解析几何、立体几何文_第2页
2020版高考数学三轮复习小题专题练(四)解析几何、立体几何文_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学必求其心得,业必贵于专精小题专题练(四)解析几何、立体几何(建议用时:50分钟)1抛物线y24x的准线方程为_2已知双曲线1(a0)的离心率为2,则a_.3一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_4(2019连云港调研)已知圆c:(x3)2(y5)25,直线l过圆心且交圆c于a,b两点,交y轴于p点,若2,则直线l的斜率k_5如图,60的二面角的棱上有a,b两点,直线ac,bd分别在这个二面角的两个半平面内,且都垂直于ab,已知ab4,ac6,bd8,则cd的长为_6已知圆c1:(x2)2(y3)21,圆c2:(x3)2(y4)29,m,n分别是

2、圆c1,c2上的动点,p为x轴上的动点,则pm|pn|的最小值为_7(2019徐州调研)在三棱柱abca1b1c1中,侧棱aa1与侧面bcc1b1的距离为2,侧面bcc1b1的面积为4,则此三棱柱abca1b1c1的体积为_ 8。已知圆c1:x2(y2)24,抛物线c2:y22px(p0),c1与c2相交于a,b两点,|ab,则抛物线c2的方程为_9如图,在直角梯形abcd中,bcdc,aedc,m,n分别是ad,be的中点,将ade沿ae折起,则下列说法正确的是_(填上所有正确说法的序号)不论d折至何位置(不在平面abc内)都有mn平面dec;不论d折至何位置都有mnae;不论d折至何位置(

3、不在平面abc内)都有mnab;在折起过程中,一定存在某个位置,使ecad.10已知o为坐标原点,过双曲线x21(b0)上的点p(1,0)作两条渐近线的平行线,分别交两渐近线于a,b两点,若平行四边形obpa的面积为1,则双曲线的离心率为_11(2019盐城模拟)已知圆c:(x3)2(y4)21和两点a(m,0)、b(m,0)(m0),若圆上存在一点p,使得apb90,则m的最小值为_12已知半径为1的球o中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为_13(2019宿迁质检)已知椭圆c:1(ab0)的左右焦点为f1,f2,若椭圆c上恰好有6个不同的点p,使得f1f2p为等

4、腰三角形,则椭圆c的离心率的取值范围是_14。如图,椭圆c:1(a2),圆o:x2y2a24,椭圆c的左、右焦点分别为f1,f2,过椭圆上一点p和原点o作直线l交圆o于m,n两点,若|pf1|pf26,则pm|pn的值为_小题专题练(四)1解析:易知抛物线y24x的准线方程为x1.答案:x12解析:因为c2a23,所以e2,得a21,所以a1。答案:13解析:设该六棱锥的高是h。根据体积公式得,v26h2,解得h1,则侧面三角形的高为2,所以侧面积s22612.答案:124解析:依题意得,点a是线段pb的中点,|pc|paac|3.过圆心c(3,5)作y轴的垂线,垂足为c1,则|cc13,|p

5、c1|6。记直线l的倾斜角为,则有|tan |2,即k2。答案:25解析:因为60的二面角的棱上有a,b两点,ac,bd分别在这个二面角的两个半平面内,且都垂直于ab,所以,0,0,因为ab4,ac6,bd8,所以4,6,|8,所以2()22222361664268cos 12068,所以cd的长为2。答案:26解析:圆c1关于x轴对称的圆c1的圆心为c1(2,3),半径不变,圆c2的圆心为(3,4),半径r3,pmpn的最小值为圆c1和圆c2的圆心距减去两圆的半径,所以|pm|pn|的最小值为1354.答案:547。解析:补形法将三棱柱补成四棱柱,如图所示记a1到平面bcc1b1的距离为d,

6、则d2。则v三棱柱v四棱柱s四边形bcc1b1d424。答案:48解析:由题意,知圆c1与抛物线c2的其中一个交点为原点,不妨记为b,设a(m,n)因为ab|,所以解得即a.将点a的坐标代入抛物线方程得2p,所以p,所以抛物线c2的方程为y2x。答案:y2x9。解析:如图,设q,p分别为ce,de的中点,可得四边形mnqp是矩形,所以正确;不论d折至何位置(不在平面abc内)都有mn与ab是异面直线,不可能mnab,所以错;当平面ade平面abcd时,可得ec平面ade,故ecad,正确故填.答案:10解析:依题意,双曲线的渐近线方程为ybx,则过点p且与渐近线平行的直线方程为yb(x1),联

7、立得y|,所以平行四边形obpa的面积sobpa2sobp21,所以b2,所以双曲线的离心率e.答案:11解析:显然ab2m,因为apb90,所以opabm,所以要求m的最小值即求圆c上点p到原点o的最小距离,因为oc5,所以opminocr4,即m的最小值为4.答案:412.解析:如图所示,设圆柱的底面半径为r,则圆柱的侧面积为s2r24r42(当且仅当r21r2,即r时取等号)所以当r时,.答案:13解析:6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称不妨设p在第一象限,pf1pf2,当pf1f1f22c时,pf22apf12a2c,即2c2a2c,解得e,又因为e1,所以e1;当pf2f1f22c时,pf12apf22a2c,即2a2c2c且2cac,解得e,综上可得e或e1。答案:14解析:由已知pm|pn|(rop|)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论