水性非离子聚氨酯粘合剂在合成革涂层中的制备和应用综述_第1页
水性非离子聚氨酯粘合剂在合成革涂层中的制备和应用综述_第2页
水性非离子聚氨酯粘合剂在合成革涂层中的制备和应用综述_第3页
水性非离子聚氨酯粘合剂在合成革涂层中的制备和应用综述_第4页
水性非离子聚氨酯粘合剂在合成革涂层中的制备和应用综述_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、水性非离子聚氨酯粘合剂在合成革涂层中的制备和应用摘要:以PTMEG2000和H12MDI为合成水性聚氨酯的主要原材料,并在在水性聚氨酯中 引入了非离子链段,降低了羧酸型亲水性扩链剂的使用量,并且还探讨了交联剂和中和度对胶膜的耐水性和耐溶剂性的影响,从而使水性非离子聚氨酯粘合剂在合成革应用中具备良好的耐水性和耐溶剂性。关键词:水性非离子聚氨酯粘合剂;三羟甲基丙烷单聚乙氧基甲醚;耐水;耐溶剂;水性合 成革涂层中图分类号文献标识码前言传统的PU合成革生产中,均采用含有甲苯、二甲苯、丙酮、丁酮( MEK、乙酸、乙酯和 二甲基甲酰胺(DMF等有机溶剂的PU树脂作为生产革品的基层和面层,这些溶剂,毒副作用

2、大,不仅造成环境污染,危害身体,而且易燃易爆,极易引发火灾等事故。从源头上杜绝 污染,对于PU革行业来说是势在必行。水性生态合成革加工采用水性聚氨酯树脂代替溶剂型树脂为原料,通过制革生产线制得革成品。水性树脂不含有毒的有机化学溶剂,生产过程中挥发出来的气体是水蒸气,对人体、 环境无危害,极大地降低了环境污染的治理费用。另外,采用水性树脂生产的合成革成品中没有任何毒性物残留,完全可以达到合成革环保的高要求。水性树脂具有耐水性、耐溶剂性、耐磨性、耐刮性、耐皱折性,透湿、透气性能,及与真皮一样的手感。相对于传统的溶剂型 合成革,水性生态革是真正意义上的高科技环保产品。用于合成革的水性聚氨酯粘合剂必须

3、具有优良的耐水性,其膜放在水中,应具备永不变形、 永不泛白变性的性能。合成革的耐水性要比耐溶剂性更为重要因为合成革制品总会接触到雨水或水性物质.如果水性PU膜遇水变会泛白,物理性能下降,那么,就很难达到实际消费指 标.而且,大部分合成革都要进行水揉纹,如果耐水性达不到要求 ,就揉不出饱满的花纹,严重时还会出现破皮现象。本实验尝试在水性聚氨酯中引入非离子链段,降低羧酸型亲水性扩链剂的使用量,并且选择合适的多元醇和异氰酸酯的组合,从而使水性聚氨酯粘合剂具有良好的耐水性和耐溶剂 性。1实验部分1.1主要原料序号名称产地1四氢呋喃醚二醇日本三菱2氢化苯基甲烷二异氰酸酯德国德固赛3辛酸亚锡北京化工三厂4

4、三羟甲基丙烷单聚乙氧基甲醚代理进口5二羟甲基丙酸江西南城红都化工6三羟甲基丙烷代理进口7N-甲基吡咯烷酮山东长信化学8丙酮北京东方9二甲氨基乙醇德国巴斯夫10去离子水11异佛尔酮二胺德国德固赛1.2水性非离子聚氨酯粘合剂的制备将真空脱水后的聚酯二元醇和异氰酸酯加入反应容器中,在机械搅拌下,温度85-90 C,反应1-2小时。降低反应体系温度至50-75 C,加入非离子扩链剂三羟甲基丙烷单聚乙氧基甲醚,亲水性扩链剂二羟甲基丙酸,交联剂三羟甲基丙烷,催化剂辛酸亚锡,在机械搅拌下,温度75-85 C反应2-3小时,在此过程中视粘度加入适量N-甲基吡咯烷酮降低粘度,待反应生成的预聚体中异氰酸酯基团(-

5、NCO含量不再变化时,加入适量丙酮降粘,降温到45C,在高剪切力下加入水,进行乳化,最后加入胺扩链剂异佛尔酮二胺,加入时间为5-10分钟进行分散,得到蓝光半透明或乳白兰光的水性非离子聚氨酯粘合剂。1.3性能测试1.3.1红外光谱分析采用红外光谱仪,对水性非离子聚氨酯粘合剂的结构进行表征。1.3.2粒径的测定乳液粒径采用光散射法进行测试。1.3.3胶膜的制备用水平尺将可调水平台调至水平,把洗干净的模板置于水平台上。将试样(75 5) g倒在模板上,并使其分布均匀,室温干燥。当乳液成膜外观呈透明状时,放入干燥箱,温度 升至60 C62C,干燥4h。再将温度升至90 C92 C,继续干燥2h,待模板

6、冷却后,将膜 轻轻放下,放入干燥器中备用。1.3.4胶膜力学性能的测定将胶膜用裁刀裁成长为 40mm宽为7mnfl亚铃状,用DL-电子拉力实验机测试,拉伸速度为500mm/mirt1.3.4胶膜耐水性的测定将胶膜裁成2 cmx 2 cm的正方形,测定样品质量(M),浸泡在25C左右的蒸馏水中,24h 后取出,用滤纸快速擦干表面,立即称取质量(M),按下式计算吸水率。W= M2-M1/ M 1 X 1001.3.5胶膜耐碱性的测定将胶膜裁成2 cmX 2 cm的正方形,测定样品质量(M),浸泡在25C左右的10%NaO溶液中,24h后取出,用滤纸快速擦干表面,立即称取质量(M),按下式计算耐碱率

7、。W2= M2-M1/ Mi X 100 1.3.5胶膜耐溶剂性的测定将胶膜裁成2 cmX 2 cm的正方形,测定样品质量(M),在体积分数为50%的甲苯溶液中 浸泡24h后取出,用滤纸快速擦干表面,立即称取质量(M),按下式计算耐溶剂率。W3= M2-M1/ M 1X 1001.3.6胶膜耐黄变紫外光的测定裁剪胶膜一半用于比照对色,另一半用于检测,采用荧光紫外灯为光源,通过模拟自然阳光中的紫外辐射,对材料进行加速耐候性试验,以获得胶膜耐黄变的结果。1.3.7孚L液耐的测定取25g乳液加入到100g0.5%氯化钙溶液中,搅匀静置 24小时,不破乳、不分层、不凝 胶即表示钙离子稳定性通过。2水性

8、非离子聚氨酯粘合剂在合成革中的应用2.1表1是水性非离子聚氨酯粘合剂与溶剂型聚氨酯产品的理化检测指标对比。表1二品水性非离子聚氨酯粘合剂溶剂II液型聚氨酯固含量(%3545PH值7.6硬度(邵氏A)3335拉伸强度(Mpa)6.26.0断裂伸长率(%760700粘度(mpa.s)30003000薄膜吸水率(%4.54.5薄膜在10%NaOI溶液中吸水率(%由表1可知水性非离子聚氨酯粘合剂与溶剂型聚氨酯相比,在物理性能上与溶剂型聚氨酯的性能相仿。2.2表2是 水性非离子聚氨酯粘合剂与溶剂II液型聚氨酯产品在合成革离型纸干法移膜中作为粘合剂在不同的条件下应用的结果对比。实验条件 产品编号 检测项目

9、 J结果-条件1条件2条件3IIIIIIIII色牢度干擦444444湿擦444444耐曲折常温12万次不裂不裂不裂不裂不裂不裂低温-20 C4万次不裂不裂不裂不裂不裂不裂TABER耐磨200转不破不破不破不破不破不破常规剥离径向Kg/cm4.284.264.244.264.064.05纬向Kg/cm4.154.154.314.113.603.50耐水解剥离12H 纬向Kg/cm4.294.284.104.083.453.4824H 纬向Kg/cm3.683.663.963.873.053.03透气性优异一般优异一般优异一般注1:实验条件1:三涂涂覆量:0.30mm ;生产速度:2.5m/min

10、 ; 1.4HD-3000高密度合成革基布。实验条件2 :三涂涂覆量:0.25mm ;生产速度:3.5m/min ; 1.4HD-3000高密度合成革基布。实验条件3:三涂涂覆量:0.20mm ;生产速度:4.0m/min ; 1.4HD-3000高密度合成革基布。注2 :产品编号I为水性非离子聚氨酯粘合剂;产品编号II为溶剂II液型聚氨酯。由以上实验结果该水性非离子聚氨酯粘合剂具有非常好的粘着性和渗透性,耐溶剂和耐水性优异,成膜无色透明,薄而柔软,耐光性和透气性优异,在水性合成革的离型纸干法刮涂中作为粘结层使用, 一方面能保证树脂与基布有良好的粘结,同时又防止树脂在刮涂过程 中过度渗入基布层

11、而影响合成革的柔软和丰满的手感。3结果和讨论3.1水性非离子聚氨酯粘合剂胶膜的红外表征和粒径分布图水性非离子聚氨酯粘合剂的红外光谱如图1所示。图1的红外光谱图中:3300cm1处为氨基甲酸酯或脲键上氢键化-NH伸缩振动产生的伸缩振动峰;28003000cm-1的峰为-C-的特征吸收峰;谱图上没有出现2275cm-1处的-NCO的特征吸收峰,表明体系中的-N CO完全反应无残留;1723cm1左右处为氨基甲酸酯中-CO 的伸缩振动峰;1 537cm-1左右为-NH的弯曲振动峰;1226cm-1左右为氨基甲酸酯中-C-O键的 振动吸收峰,750cm -1处为醚键C-O-C的振动吸收峰。因此,可以确

12、定所得的产物是非离子脂肪族水分散聚氨酯。图1:水性非离子聚氨酯粘合剂的红外光谱图18水性非离子聚氨酯粘合剂的粒径分布如图2、图3、图4所示。图2水性非离子聚氨酯粘合剂通过强度的大小分布来表示的粒径大小分布曲线图Size DisIributiDn by Intensity4 2 D na fv11110 1001000Siu (d nrn)100IX)Recdfd 191: Exli-7D1 1图3水性非离子聚氨酯粘合剂通过体积分布来表示的粒径大小分布曲线图Siae Disiribulion by VolumeRecord 191; Exu-7Di 1图4水性非离子聚氨酯粘合剂通过数目分布来表示

13、的粒径大小分布曲线图Sze Di&tributjan by Number(番】JmqEnzQJ_|一Od11010010001Q0Q0Size (d.nmFRea)rd 191:Exu-701 13.2不同低聚物多元醇对水性非离子聚氨酯粘合剂性能的影响分别用PTMEG2OO0 PHA200Q PPG2000及PCL2000作为不同软段,以 H12MDI为硬段材料,固定-NCO/-OH之比,交联剂用量,及亲水基团含量,合成系列PU的性能比较见表3、表4。表3不同多元醇对胶膜机械性能的影响比较多元醇种类拉伸强度/MPa断裂 伸长率/%吸甲苯率/%吸水率/%耐碱率%PTMEG 200029.5675

14、01347.34.2PHA2QQQ28.6468011324.025.3PPG200020.4765032711.212.3PCL200028.9770011023.022.6注:PTMEG 2QQQ聚四氢呋喃醚二醇PHA2QQQ1.6-己二醇-己二酸聚酯PPG2QQQ聚氧化丙烯二醇PCL2QQQ聚己内酯二醇表4不同多元醇制成的聚氨酯乳液稳定性及胶膜变化的对比多元醇种类初始乳液外 观乳液放置3个 月乳液放置半年乳液放置一年 以后胶膜放置半年后 变化PTMEG 2000乳白蓝光乳 液乳白蓝光乳 液乳白蓝光乳液乳白蓝光乳液无变化PHA2000乳白蓝光乳 液乳液变白并 有浑浊沉降上部是水层, 下部是

15、白色沉 降无变化PPG2000乳白蓝光乳 液乳白蓝光乳 液乳白蓝光乳液乳白蓝光乳液无变化PCL2000乳白蓝光乳 液乳白蓝光乳 液乳液继续沉降上部是水层, 下部是白色沉 降膜结晶表3、表4可见,PTME(和PPG因为分子结构中含有醚键,具有良好的耐水解性,乳液的放置稳定期长,而PHA和PCL因为分子结构中含有易水解的酯基,所以乳液易降解,稳定期短。聚四氢呋喃型聚醚多元醇是端基为伯羟基的线型或支化的特种聚醚多元醇。由于它高性能规整链段结构,能赋予聚氨酯材料优异的低温柔韧性、耐磨性、耐水解、耐霉菌、机械 强度高、回弹性能优异。而对于PHA,由于含有大量的极性较大的酯基基团,很容易与水结合形成氢键,

16、在水分子的作用下,聚氨酯分子之间相互作用,分子间距离增大,从而破坏大分子结构,导致力学性能下降。因此,我们在实验中选择了综合性能好的PTMEG2QQ作为合成水性非离子聚氨酯胶黏剂的多元醇原料。3. 3不同异氰酸酯对水性非离子聚氨酯粘合剂的影响以PTMEG2QQ为多元醇组分,分别用H12MDI、IPDI及HDI作为不同硬段,固定-NCO/-OH之比,交联剂用量,及亲水基团含量,合成系列PU的性能比较见表5表5不同异氰酸酯对乳液和胶膜的影响-NCO类型拉伸 强度/MPa伸长率/%乳液 外观吸甲苯率/%吸水率/%耐碱率%H12MDI29.56750蓝光透明1347.34.2IPDI23.21720蓝

17、光透明25324.025.3HDI24.36680蓝光透明32728.230.3 由表5可知,H12MDI由于分子中有两个环己基,是对称性的二异氰酸酯,分子结构规整 性好,所以用它制得的聚氨酯耐高温,物理强度更高,综合性能更好。3.4异氰酸酯指数(NCO/OH直)对水性聚氨酯粘合剂的影响NCO基团和一OH基团预聚反应的摩尔比对合成的聚氨酯乳液性能有重要影响,实验中以H12MDI为硬段材料,固定乳液配方中的PTMEG2OO0勺用量和三羟甲基丙烷单聚乙氧基甲醚的含量(3.4%)以及二羟甲基丙酸(DMEA的含量(1.4%)不变,并考察NCO/OH直对胶膜的 影响。见表6.表6不同NCO/OH寸水性非

18、离子聚氨酯粘合剂胶膜的影响NCO/OH值拉伸强度/MPa伸长率/%吸甲苯率/%吸水率/%耐碱率%129.567501347.34.2232.646001257.03.6438.875601136.52.8642.364301064.32.5由表6可知:随着NCO/OK的增加胶膜的吸水率下降,拉伸强度增大,断裂伸长率随之 降低。因为NCO/OH直可以反映出聚氨酯分子中硬段与软段之比 ,硬段比例增加使得聚氨酯 的内聚能增大,从而使得聚氨酯分子链的刚性增加柔性下降,其宏观表现是乳胶膜的拉伸强度增大,断裂伸长率变小。此外 NCO/OH直的增大增强了硬段结晶微区的交联作用,因此乳胶膜的力学性能得到提高,

19、同时胶膜疏水作用增强,吸水率下降。但是 R值过大,胶膜的 手感变硬,不能满足合成革制品的柔软手感的要求。3.5不同非离子亲水性扩链剂对水性非离子聚氨酯粘合剂的影响合成实验中固定 PTMGE200和 H12MDI以及DMEA勺用量,选择不同的非离子亲水性扩链剂,对非离子水分散聚氨酯乳液及胶膜的影响见表7。表7不同非离子亲水扩链剂对水性非离子聚氨酯粘合剂乳液及胶膜的影响非离子 扩链剂用量/%乳液外观乳液粘度/厘泊乳液稳定性耐钙性/%三羟甲3.4乳蓝光半透明10半年后不分层,无沉淀通过基丙烷 单聚乙 氧基甲醚聚乙二醇40014.5水样透明250三个月后自增稠,不流动絮凝29水样透明2200一个月后自

20、增稠,不流动不絮 凝,但增稠聚乙二醇60012水样透明240三个月后自增稠,不流动絮凝25水样透明2000一个月后自增稠,不流动不絮 凝,但增稠聚乙二醇 10009水样透明180半年后自增稠,不流动絮凝20水样透明1500两个月后自增稠,不流动不絮 凝,但增稠由表7可知,采用低分子量的聚乙二醇400、600、1000作为非离子亲水扩链剂,必须用量很高才能做出当时稳定的乳液,且乳液放置稳定期短, 有自增稠现象,乳液的耐电解质虽然勉强通过,但成膜的耐水性极差, 膜的物理性能很差, 采用三羟甲基丙烷单聚乙氧基甲 醚在聚合物主链横向位置提供非离子链段,没有聚合物封端,在聚合物的主链的分布比较均匀,产品

21、本身具有非常好的放置稳定性,配合适量的羧酸基扩链剂使用可以形成稳定的非离子水分散聚氨酯乳液,并且乳液具有很好的电解质和酸性介质的稳定性以及很好的物理性3.6亲水扩链剂D M P A用量对非离子水分散聚氨酯乳液的影响DMPA勺加入量对乳液及胶膜性能也有重要影响。表8是固定PTEMG2000口 H2MDI及三羟甲基丙烷单聚乙氧基甲醚的量,采用不同DMPAS对水性非离子聚氨酯粘合剂乳液及胶膜的影响。表8不同DMPAS对非离子水分散聚氨酯乳液及胶膜的影响DMPA加入量/%乳液 外观乳液粘度 /厘泊乳液粒径/m乳液 稳定性乳液 耐钙性胶膜 吸水率/%1.0雪白乳液778.2放置有沉淀通过41.4乳白85

22、6.7稳定通过4.11.8乳白监光 :1051.3稳定通过4.52.4蓝光透明20048.2稳定24小时后略有 凝絮物103.4蓝光透明60040.4稳定出现凝胶16.35.0蓝光透明100035.1稳定出现凝胶26.0由表8可知,随着DMPA用量的增加,乳液外观由乳雪白色逐渐过渡到蓝光透明,乳液的平均粒径也逐渐减小。这是因为DMPA用量增加,为系统提供了更多的亲水基团,分子链的亲水性增大,聚氨酯更容易在水中分散,粒径就越小。同时随着DMPA用量的增大,水性聚氨酯乳液耐钙性降低,胶膜的吸水率显著增加。这是因为随着DMPA用量增加,水性聚氨酯分子链上的亲水性基团增多,极性基团含量增大,中和后生成

23、水性聚氨酯亲水性增大,从而导致聚氨酯乳液耐钙性降低,胶膜的吸水率增大,耐水性降低。提高DMPA用量的同时,一方面增加了该分散体分子的亲水性,随着分子链中的离子含量的增加,分子链亲水性增加,提高了聚合物分子的水化作用,减少了分子链间的相互缠绕,有利于聚合物高微细分散;另一方面随分子链内离子基团的增加,各链段之间库仑力的作用也增加,导致粒径减小, 虽然水分散液稳定性增加,但是大大降低了乳液的耐钙性能。综上所述,当DMPA勺质量分数为1.41.8 %寸,乳液的综合性能较好。3.7内交联剂三羟甲基丙烷(TMP)用量对水性非离子聚氨酯粘合剂的影响目前大多数水性聚氨酯主要是由自乳化法制备,涂膜干燥时若亲水

24、成分不能有效的进入交联网络中,干燥形成的涂膜遇水易溶胀。因此,常采用提高涂膜的交联 密度来改善乳液涂膜的耐水性和耐溶剂性。所以在合成聚氨酯预聚物时,加入官能 度大于2的多羟基化合物,直接生成交联聚氨酯预聚物,将上述预聚物很好地分散 在水中,并扩链形成大分子,最后形成乳液。表9是固定PTEMG2000 H2MDI、三羟甲基丙烷单聚乙氧基甲醚及 DMPA勺量,采用不同TMP的量对水性非离子聚氨酯粘合剂胶膜的 影响。表9不同TMPS对水性非离子聚氨酯粘合剂胶膜的影响TMP加入量/%拉伸强度/MPa伸长率/%吸甲苯率/%吸水率/%耐碱率%029.567601348.55.00.529.42753139

25、7.54.51.030.59:7451307.34.3:1.531.247401217.04.22.033.677001156.94.02.538.126201006.83.83.040.36500956.53.6由表9可知:随着TMP用量即交联度的增加,膜的拉伸强度增加,断裂伸长率变小,耐水性和耐溶剂性明显改善。这是由于在无交联剂时,分子呈线性,分子链通过物理作用聚集在一起,在一定的外力作用下,分子间容易发生滑动,因此聚氨酯胶膜的抗拉强度低,断裂伸长率较大。三官能团 TMP的引入,使分子链间产生交联,随着交联程度的增加,胶膜的抗拉强度升高,断裂伸长率下降。但交联度过大,会给合成带来很大困难,

26、合成时粘度大,消 耗溶剂多,中和不易控制,因此,交联度应控制在一个合适的范围。3.8中和度对水性非离子聚氨酯粘合剂性能的影响中和度指的是加入的碱量占完全中和羧基所需碱量的百分比。表9和图5显示了当NC0/0H=1.3% N-120=3.4%、w (DMPA ) =1.4%时,利用二甲氨基乙醇中和,不同中和度对非离子水分散聚氨酯乳液性能的影响。表10中和度对预聚物外观和水性非离子聚氨酯粘合剂乳液外观的影响项目中和度/%708090100110预聚物外观无色透明 粘稠无色透明 粘稠无色透明 粘稠无色透明 粘稠浅黄色透明 粘稠乳液外观石灰水状有 絮凝物白色乳白乳白蓝光蓝光从表10可以看到,随着中和度

27、逐渐增大,乳液外观由不透明趋向半透明。在中和度小于100%时,预聚物外观为无色透明;在中和度大于100%后,乳液外观处于蓝色透明状态,但是预聚物变成了浅黄色透明并有颜色加深的趋势。图5中和度对非离子水分散聚氨酯乳液粒径和胶膜吸水率的影响胶 模 的 吸 水 率%中和度(%由图5可看出,随着中和度的增大,乳液粒径逐渐减小并趋于稳定。这是因为分散体中的亲水性影响了乳液的粒径。当中和度在70 % 一 100 %时,中和度增大的同时,聚合物链上的亲水基团也增加,导致聚合物分散体在水中分散更加容易,所以乳液粒径减小。由图5还可以看出,当中和度在 100% 一 110%时,水性聚氨酯胶膜的吸水率先逐渐降低,

28、在中和 度为100%左右时达到最低值,随后吸水率则又呈升高的趋势。这可能是因为当中和度小于 100 %时,随着中和度的增大,乳液粒径减小,使成膜时粒子间堆砌紧密,分子链间由于不 易滑动,活动能力下降,水分子较难由外向内渗透到胶膜中并在胶膜内部扩散,导致胶膜吸水率降低,耐水性提高。当中和度大于100%时,过量的中和剂分散水性于聚氨酷大分子中可能成为杂质,使乳胶粒在成膜时相互融合性差,胶膜致密性下降,水分子反而容易由外向内渗透,造成胶膜吸水率又上升 ,耐水性下降。因而胶膜的吸水率又呈现上升的趋势。综上 所述,利用二甲氨基乙醇作为中和剂,中和度在90% 一 100 %比较适宜,而中和度为 100 %时乳液的综合性能较好。结论:1、以PTMEG200和H12MD为主要原料合成的水性聚氨酯具有良好的耐水性和耐溶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论