版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章位置与坐标一、知识要点一、平面直角坐标系(一)有序数对:有顺序的两个数a与b组成的数对。1 、记作(a , b);2、注意:a、b的先后顺序对位置的影响。(二)平面直角坐标系1 、历史:法国数学家 笛卡儿最早引入坐标系,用代数方法研究几何图形2 、构成坐标系的各种名称;3 、各种特殊点的坐标特点。(三)坐标方法的简单应用1 、用坐标表示地理位置;2、用坐标表示平移。二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平
2、分线上的点的横纵坐标相反。四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:坐标轴上连线平行于点P( x,y)在各象限象限角平分线上点 P( X,y)坐标轴的点的坐标特点的点X轴Y轴原占八、平行X轴平行Y轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限(x,0(0,y(0,纵坐标相横坐标相x 0x v 0x v 0x 0(m,m)(m,-m)0)同横坐标同纵坐标y 0y 0y v 0y v 0)不同不同? 建立坐标系,选择一个适当的参照
3、点为原点,确定x轴、y轴的正方向;六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:? 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;? 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。七、用坐标表示平移:见下图知识一、坐标系的理解例1、平面内点的坐标是(一个点 B一个图形C一个数 D个有序数对学生自测1 在平面内要确定一个点的位置,一般需要.个数据;在空间内要确定一个点的位置,一般需要个数据.原点0既在X轴上也在 Y轴上原点0在坐标平面内2、在平面直角坐标系内,下列说法错误的是原点0的坐标是0原点0不在任何象限内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x
4、轴上,坐标为(x,0 )在x轴的负半轴上时,x0点在y轴上,坐标为(0,y )在y轴的负半轴上时,y0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x, y) xy0第二、四象限角平分线上的点的横纵坐标相反(即在y= -x直线上);坐标点(x,y)xy0,则点P在第 象限;若点P( x, y)的坐标满足xy 0,且在x轴上方,则点p在第象限.若点P (a, b)在第三象限,则点P (-a,b+1)在第象限;5.若点P(1 m, m)在第二象限,则下列关系正确的是()A. 0 m 1 B. m 0 C.m 0D.m 16 .点(x , x 1)不可能在()A.第一象限B
5、.第二象限C.第三象限D.第四象限7.已知点P(2x 10,3 x)在第三象限,则x的取值范围是()P在坐标平面内的位置:A .3x5 5 或 x w 3& (本小题12分)设点P的坐标(x, y),根据下列条件判定点(1) xy 0 ; (2) xy0 ; (3) x y 0 .点A(1- ,2,)在第象限.(3)横坐标为负,纵坐标为零的点在()(A)第一象限(B)第二象限(C)X轴的负半轴 (D)Y轴的负半轴(4)如果a-b V 0,且abv 0,那么点(a , b)在()(A)第一象限,(B)第二象限(C)第三象限,(D) 第四象限. 已知点A (m n)在第四象限,那么点 B (n,
6、m)在第象限若点P(3a-9,1-a)是第三象限的整数点(横、纵坐标都是整数),那么a= 知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。过点作x轴的线,垂足所代表的 是这点的横坐标;过点作 y轴的垂线,垂足所代表的实数,是这点的 。点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第个位置,中间用隔开。例1、X轴上的点P到Y轴的距离为,则点P的坐标为()A( ,0)B ,0)C(0,D,0) 或,0)学生自测1、 点A(2,3 )至 x轴的距离为 ;点( - 4,0)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是 。2. 若点A的坐标是(一3,5)
7、,则它到 x轴的距离是 ,至U y轴的距离是.3点P至U x轴、y轴的距离分别是2 、1,则点P的坐标可能为。4. 已知点M到x轴的距离为3,到y轴的距离为2,贝U M点的坐标为().A. (3,2) B . (-3,-2) C . (3,-2 )D . (2, 3),(2, -3 ),(-2,3),(-2,-3 )5. 若点P ( a,b )到x轴的距离是2,至U y轴的距离是3,则这样的点P有 ()A . 1个 B . 2个C . 3个D . 4个6. 已知直角三角形 ABC的顶点A(2,0),B(2,3).A是直角顶点,斜边长为5,求顶点C的坐标.7. 直角坐标系中,正三角形的一个顶点的
8、坐标是(0,),另两个顶点B、C都在x轴上,求B, C的坐标.9. 在平面直角坐标系中,A, B, C三点的坐标分别为(0, 0), (0, -5 ) , (-2 , -2 ), ?以这三点为平行四边形的三个顶点,则第四个顶点不可能在第 象限.10. 直角坐标系中,一长方形的宽与长分别是6, 8,对角线的交点在原点,两组对边分别与坐标轴平行,求它各顶点的坐标11. 在平面直角坐标系中,A, B, C三点的坐标分别为(0, 0), ( 0, -5 ), (-2 , -2 ), ?以这三点为平行四边形的三个顶点,则第四个顶点不可能在第 象限.14.已知等边 ABC的两个顶点坐标为 A (-4 ,
9、0), B (2, 0),求:(1)点C的坐标;(2)? ABC的面积知识点五:对称点的坐标特征。关于x对称的点,横坐标不 ,纵坐标互为 ;关于y轴对称的点,坐标不变,坐标互为相反数;关于原点对称的点,横坐标 ,纵坐标 。例1. 已知A( 3,5),则该点关于x轴对称的点的坐标为 ;关于y轴对的点的坐标为;关于原点对称的点的坐标为 ;关于直线x=2对称的点的坐标为。例2.将三角形 ABC的各顶点的横坐标都乘以1,则所得三角形与三角形ABC的关系( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将三角形ABC向左平移了一个单位学生自测1在第一象限到x轴距离为4,到y轴距离为7的点的坐标是
10、 ;在第四象限到x轴距离为5,到y轴距离为2的点的坐标是 ;3点A(-1,-3)关于x轴对称点的坐标是.关于原点对称的点坐标是 。4.若点A(m,-2),B(1,n) 关于原点对称,则m= ,n=5 .已知:点 P的坐标是(m, 1),且点P关于x轴对称的点的坐标是 (3, 2n),则 m , n ;6. 点P( 1,2)关于x轴的对称点的坐标是 ,关于y轴的对称点的坐标是,关于原点的对称点的坐标是 ;7. 若 M (3, m)与N (n, m 1)关于原点对称,贝U m , n ;9直角坐标系中,将某一图形的各顶点的横坐标都乘以1,纵坐标保持不变,得到的图形与原图形关于 轴对称;将某一图形的
11、各顶点的纵坐标都乘以1,横坐标保持不变,得到的图形与原图形关于 轴对称.10.点 A(3,4)关于x轴对称的点的坐标是()A.( 3,4) B. (3,4) C .(3, 4) D.(4,3)11 .点 P(1, 2)关于原点的对称点的坐标是()A.( 1,2) B (1,2) C(1,2) D.(2,1)12.在直角坐标系中,点P( 2, 3)关于y轴对称的点P1的坐标是()A ( 2,3)B. (2,3) C.(2, 3)D.(2,3)若.a 3 +(b+2) 2=0,则点 M (a,b)关于y轴的对称点的坐标为13若一个点的横坐标与纵坐标互为相反数,则此点一定在()A.原点 B x轴上
12、C两坐标轴第一、三象限夹角的平分线上D 两坐标轴第二、四象限夹角的平分线上知识点六:利用直角坐标系描述实际点的位置。需要根据具体情况建立适当的平面直角坐标系,找出对应点的坐标。学生自测:1. 课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0, 0)表示,小军的位置用(2 , 1)表示,那么你的位置可以表示成 ()A. (5 , 4) B (4 , 5) C (3 , 4) D (4 , 3)知识点七:平移、旋转的坐标特点。图形向左平移 m个单位,纵坐标不变,横坐标m 个单位;图形向右平移m个单位,纵坐标不变,横坐标m个单位;图形向上平移个单位,横坐标 ,纵坐标增加n个
13、单位;向下平移 n个单位,不变,减小n个单位。旋转的情形,同学们自己归纳一下。例1. 三角形ABC三个顶点 A B C的坐标分别为 A(2,- 1)、B(1,- 3)、C(4,.把三角形ABQ向右平移4个单位,再向下平移 3个单位,恰好得到三角形 ABC试写出三 角形ABC三个顶点的坐标,并在直角坐标系中描出这些点;在平面直角坐标系中,将点M(1,0)向右平移3个单位,得到点 M1,则点M1的坐标为 学生自测1. (本小题10分)矩形ABCD在坐标系中的位置如图 3所示,若矩形的边长 AB为1, AD为2. 则点A,B,C, D的坐标依次为 ;把矩形向右平移3个单位,得矩形 ABC D,A, B, C, D的坐标为.3. 小华若将平面直角坐标系中一只猫的图案向右平移了3个单位长度,而猫的形状,大小都不变,则她将图案上的各点坐标.图34平面直角坐标系中一条线段的两端点坐标分别为(2,1),(4,1 ),若将此线段向右平移1个单位长度, 则变化后的线段的两个端点的坐标分别为 ; ?若将此线段的两个端点的纵坐标不变,?横坐标变为原来的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常备借贷便利债券质押合同(适用于托管机构为清算所)
- 健身房销售人员工作总结
- 酒楼转让合同书范本
- 定作合同范本
- 2024年电力营销工作总结
- 校园建设施工方案
- 产房知识护理培训课件
- 药品相关知识培训课件
- 胸痛急救知识培训课件
- 贵州城市职业学院《医用治疗仪器》2023-2024学年第一学期期末试卷
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之9:“5领导作用-5.3创新战略”(雷泽佳编制-2025B0)
- 江苏省连云港市2023-2024学年八年级上学期期末数学试题(原卷版)
- 初中英语听力高频词
- 2025年生活饮用水监督检查工作计划
- Unit 3 My School Section B 1a-1d 教学实录 2024-2025学年人教版七年级上册英语
- 2024年度知识产权许可合同:万达商业广场商标使用许可合同3篇
- 服务营销课件-课件
- 【MOOC】药理学-华中科技大学 中国大学慕课MOOC答案
- 脑卒中抗血小板治疗
- 机器人操作系统ROS原理及应用 课件 07 ROS简介
- 螺杆压缩机安装施工方案
评论
0/150
提交评论