下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本文介绍了变频器的工作原理和控制方式,文中遵循理论和实际相结合的原则,对变频器的工作原理和控制方式作了详细的对比和分析。改变工频电源的频率和电压,从而改变电动机转速。电动机转速的大小和频率是正比关系。和功耗三次方成比例。在不需要电机全速运行的时候实时的降低其转速可以大大节省能耗。 变频器的工作原理 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 注:再次整流(直流变交流)-更贴切的叫法是 逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!mym(2005.08.23) 1. 电机的旋转速度
2、为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机 50Hz 3000 r/min 4极电机 50Hz 1500 r/min $电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。 由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自
3、由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 $ 改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? *1: 工频
4、电源 由电网提供的动力电源(商用电源) *2: 起动电流 当电机开始运转时,变频器的输出电流 -变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动- 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 3. -当变频器调速到大于50Hz频率
5、时,电机的输出转矩将降低- 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te P=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。 因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie) 4. 变频器50Hz以上的应用情况大家知道 ,对一个特定的电机来说, 其额定电压和额定电流是不变的. 如变频器和电机额定
6、值都是: 15kW/380V/30A 电机可以工作在50Hz以上,当转速为50Hz时 变频器的输出电压为380V 电流为30A. 这时如果增大输出频率到60Hz 变频器的最大输出电压电流还只能380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速. 这时的转矩情况怎样呢? 因为P=wT (w:角速度 T:转矩). 因为P不变 w增加了 所以转矩会相应减小. 我们还可以再换一个角度来看: 电机的定子电压 U = E + I*R (I为电流 R为电子电阻 E为感应电势) 可以看出 UI不变时 E也不变. 而E = k*f*X (k:常数 f: 频率 X:磁通) 所以当f由50-60Hz
7、时 X会相应减小 对于电机来说 T=K*I*X (K:常数 I:电流 X:磁通) 因此转矩T会跟着磁通X减小而减小. 同时 小于50Hz时 由于I*R很小 所以U/f=E/f不变时 磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变-最大转矩不变) 结论: 当变频器输出频率从50Hz以上增加时 电机的输出转矩会减小. 5. 其他和输出转矩有关的因素发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。载波频率: 一般变频器所标的额定电流都是以最高载波频率 最高环境温度下能保证持续输出的数值.
8、降低载波频率 电机的电流不会受到影响。但元器件的发热会减小。环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值. 海拔高度: 海拔高度增加 对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了. 6. 矢量控制是怎样改善电机的输出转矩能力的?*1: 转矩提升 此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩。$ 改善电机低速输出转矩不足的技术 使用矢量控制,可以使电机在低速如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出
9、的转矩(最大约为额定转矩的150)。对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做转矩提升(*1)。 转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。 因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。 矢量控制把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。矢量控制可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情
10、况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。 关键词:变频器、控制方式、工作原理近年来,随着电力电子技术、微电子技术及大规模集成电路的发展,生产工艺的改进及功率半导体器件价格的降低,变频调速越来越被工业上所采用。如何选择性能好的变频其应用到工业控制中,是我们专业技术人员共同追求的目标。下面结合作者的实际经验谈谈变频器的工作原理和控制方式: 1 变频器的工作原理我们知道,交流电动机的同步转速表达式位:n60 f(1s)/p (1)式中 n异步电动机的转速; f异步电动机的频率; s电动机转差率; p电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动
11、机的转速,当频率f在050Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。2变频器控制方式 低压通用变频输出电压为380650V,输出功率为0.75400kW,工作频率为0400Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,
12、其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节
13、较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和
14、磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。2.4直接转矩控制(DTC)方式 1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控
15、制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。2.5矩阵式交交控制方式 VVVF变频、矢量控制变频、直接转矩控制变频都是交直交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交交变频应运而生。由于矩阵式交交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:控制定子磁链引入定子
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动承接合同模板
- 学校建设工程合同模板
- 口红加盟协议合同模板
- 2024年制造业生产基地转让协议
- 关于保安服务合同模板
- 工商管理总局合同模板
- 机械加工承包加工合同模板
- 交电产品销售合同模板
- 清包工合同模板
- 2024年工业货架施工包工协议
- Starter Unit 3 Section A(Pronunciation)课件人教版2024新教材七年级上册英语
- 学习动机的干预策略研究
- 护理用药安全管理幻灯片
- 中医诊所一人一方代煎制粉丸委托书
- 2024年云南省中考英语试卷附答案
- 2024年保育员考试题库加解析答案
- 语文 职业模块语文综合实践教学课件(讲好劳模故事 学习劳模精神)
- 医院疏散逃生讲解
- 【短视频平台商品营销策略探究:以抖音为例8800字(论文)】
- 2024年保险考试-车险查勘定损员笔试参考题库含答案
- 国企市场化转型方案
评论
0/150
提交评论