电子元器件常识_第1页
电子元器件常识_第2页
电子元器件常识_第3页
电子元器件常识_第4页
电子元器件常识_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电子元器件常识模拟 IC 与数字 IC 对比处理连续性的光、声音、速度、温度等自然模拟信号的 IC 被称为模拟 IC 。模拟 IC 处理的 这些信号都具有连续性,可以转换为正弦波研究。而数字 IC 处理的是非连续性信号,都是 脉冲方波。模拟 IC 按技术类型来分有只处理模拟信号的线性 IC 和同时处理模拟与数字信号的混合 IC 。 模拟 IC 按应用来分可分为标准型模拟 IC 和特殊应用型模拟 IC 。标准型模拟 IC 包括放大器 (Amplifier) 、电压调节与参考对比 (Voltage Regulator/Reference) 、信号界面 (Interface) 、数据转换 (Data

2、 Conversion) 、比较器 (Comparator) 等产品。特殊应用型模拟 IC 主要应用在 4 个领域, 分别是通信、 汽车、电脑周边和消费类电子。模拟 IC 具有四大特点:a、生命周期可长达10年。数字IC强调的是运算速度与成本比,数字IC设计的目标是在尽量低的成本下达到目标运算速度。 设计者必须不断采用更高效率的算法来处理数字信号, 或 者利用新工艺提高集成度降低成本。因此数字 IC 的生命周期很短,大约为 1 年-2 年。模拟 IC 强调的是高信噪比、低失真、低耗电、高可靠性和稳定性。产品一旦达到设计 目标就具备长久的生命力, 生命周期长达 10年以上的模拟 IC 产品也不在

3、少数。 如音频运算 放大器NE5532自上世纪70年代末推出直到现在还是最常用的音频放大IC之一,几乎50%的多媒体音箱都采用了 NE5532其生命周期超过 25年。因为生命周期长,所以模拟IC的价格通常偏低。b、工艺特殊少用 CMO工艺数字IC多采用CMOSE艺,而模拟IC很少采用CMO缸艺。因为模拟IC通常要输出高 电压或者大电流来驱动其他元件, 而CMO工艺的驱动能力很差。 此外,模拟IC最关键的是 低失真和高信噪比, 这两者都是在高电压下比较容易做到的。 而CMO工艺主要用在5V以下 的低电压环境,并且持续朝低电压方向发展。因此,模拟 IC 早期使用 Bipolar 工艺,但是 Bip

4、olar 工艺功耗大,因此又出现 BiCMOS 工艺,结合了 Bipolar工艺和CMOSC艺两者的优点。另外还有 CD工艺,将CMO工艺和DMOS 工艺结合在一起。而 BCD工艺则是结合了 Bipolar、CMOS DMO三种工艺的优点。在高频领 域还有SiGe和GaAS工艺。这些特殊工艺需要晶圆代工厂的配合,同时也需要设计者加以熟悉,而数字 IC 设计者基本上不用考虑工艺问题。c、与元器件关系紧密模拟 IC 在整个线性工作区内需要具备良好的电流放大特性、 小电流特性、 频率特性等; 在设计中因技术特性的需要, 常常需要考虑元器件布局的对称结构和元器件参数的彼此匹配 形式;模拟 IC 还必须

5、具备低噪音和低失真性能。电阻、电容、电感都会产生噪音或失真, 设计者必须考虑到这些元器件的影响。对于数字电路来说是没有噪音和失真的, 数字电路设计者完全不用考虑这些因素。 此外由于 工艺技术的限制, 模拟电路设计时应尽量少用或不用电阻和电容, 特别是高阻值电阻和大容 量电容,只有这样才能提高集成度和降低成本。某些射频IC 在电路板的布局也必须考虑在内,而这些是数字 IC 设计所不用考虑的。 因此模拟 IC 的设计者必须熟悉几乎所有的电子元 器件。d、辅助工具少测试周期长模拟 IC 设计者既需要全面的知识, 也需要长时间经验的积累。 模拟 IC 设计者需要熟悉 IC 和晶圆制造工艺与流程,需要熟

6、悉大部分元器件的电特性和物理特性。通常很少有设计 师熟悉IC和晶圆的制造工艺与流程。而在经验方面,模拟IC设计师需要至少3年-5年的经验,优秀的模拟 IC 设计师需要 10 年甚至更长时间的经验。模拟IC设计的辅助工具少,其可以借助的EDA工具远不如数字IC设计多。由于模拟IC 功耗大,牵涉的因素多,而模拟 IC 又必须保持高度稳定性,因此认证周期长。此外,模 拟 IC 测试周期长且复杂。某些模拟IC产品需要采用特殊工艺和封装,必须与晶圆厂联合开发工艺,如BCD工艺和30V高压工艺。此外,有些产品需要采用WCP晶圆级封装,拥有此技术的封装厂目前还不多。新型非接触式电流传感器l 原来状况原来的非

7、接触式电流传感器大致有3种结构模式 ,如图 1所示。在图 1中,例 1所示为以霍尔元件作为磁场检测元件设置在铁芯的间隙内 ;例 2 所示为在铁芯的间隙内设置霍尔元件 而在铁芯上设置反馈线圈:例 3所示为在铁芯的间隙内设置磁一光效应元件( 应用法拉第效应的元件 ), 用作磁场检测元件。上述 3 种结构模式的缺点如下:例 l 中元件的温度特性不佳 , 输出均匀性较差 , 因而电流检测精度不高。再者 , 此种传感 器极易受漂移的影响 稍微受点漂移影响就难以测量含直流成分的电流。例 2 虽可解决例 1 中出现的问题 , 但要精密测量线圈中流过的电流还必须排除外界干扰 因索,如果受到感应噪声等因素的影响

8、 , 也就难以实现精密测量。 特别是电流传感器的传感部 和控制电流传感器信号的控制部之间的距离长 , 付出的代价就更高。例 3 由于其控制部的信号只用光传送 , 噪声虽低但漂移的影响却不小因而也不能测 量含直流成分的电流。2 技术创新本开发立足于技术创新 , 着重致力于结构改进 其举措是局部铁芯为饱和磁体 ,并由铁芯 形成间隙 ,铁芯环绕在导体的外周 , 线圈绕在铁芯上 ,将磁场检测元件设置在间隙内。由于本开发将磁场检测元件设置在铁芯饱和磁体的间隙内 因而在测量导体中所流过的 电流时线圈中没有电流。 若用磁场检测元件测量间隙内的磁场 根据测得的磁场强度即可知 道导体中流过的电流。在此情况下如果

9、磁场检测元件的检测灵敏度始终保持稳定不变, 那么要精确测量导体中流过的电流是不成问题的。可是 , 磁场检测元件的材料、制件、粘接剂等因温度引起的变 化以及时效变化、 光源变化等因素都会影响磁场检测元件的检测灵敏度 使之产生漂移。 因 此, 不能精密测量导体中流过的电流。 为此本开发采用绕在铁芯上的线圈 , 可按需要对磁场 检测元件的灵敏度加以校正 , 使磁场检测元件的灵敏度始终如一 , 经常保持在稳定不变的状 态。校正灵敏度时经由绕在铁芯上的线圈内流过的电流达到一定量值程度时, 就会使铁芯的磁体形成饱和状态而与导体中流过的电流无关。间隙内产生一定量的磁通密度, 当其达到一 定程度时 , 即使磁

10、场再增强磁通密度也不会再增大。此时。可用磁场检测元件测量间隙内的磁场。 此测量值中如果不存在上述漂移因素 那么通常即为固定值 (基准值 ) 。但若存在漂 移因素 ,其值就会变化。放大器与磁场检测元件的光检测器连接,对其进行调制 , 并将磁场检测元件的输出值与基准值相比较。 同时对磁场检测元件的灵敏度进行校正。 此校正可在瞬间 进行 ,并且无需切断导体中流动的电流。3 实例图 2 所示为本开发提供的非接触式电流传感器的结构。线圈绕在铁芯上 , 磁场检测元件 设置在铁芯的间隙内 光检测器测量磁场检测元件的输出 , 放大器调制磁场检测元件的输出。局部铁芯必须形成饱和磁体 , 但并不局限于此 , 整个

11、铁芯均为饱和磁体也无妨。 若需追求 饱和磁体所具有的短暂饱和特性。选用铁紊体或非晶体之类的磁性合金便可奏效。图 3 所示为非接触式电流传感器的铁芯示例。 铁芯的两端部采用高磁导率和高磁通密度 的磁体 ,端头以外部分采用饱和磁体。 两端头尖细成锥形 , 以增大间隙的磁通密度。 提高电流 传感器的灵敏度。磁场检测元件可以采用磁一光效应元件和霍尔元件。 但是由于前者仅用光的方式就能进 行传感部和控制部之间的信号传送 , 并且不受感应噪声的影响 因而相比之下前者较为理想。在测量导体内流过的电流时。饱和磁体随其流过的电流一旦达到饱和程度, 即使再增大导体中的电流间隙内的磁场也不会再变化。由于其变化量用磁

12、场检测元件检测不出 , 因而 饱和磁体的饱和程度不能由导体内流过的电流来定。 而其饱和点主要取决于饱和磁体的形状 和尺寸 , 特别是间隙的形状和尺寸。4 效果实验结果表明。 新开发的非接触式电流传感器具有如下成效: 消除了磁场检测元件的输 出漂移 ,能精确测量含直流成分的电流 ; 无需精密调制线圈中流动的电流就能精密测量电流 采用磁一光效应元件其输入和输出信号为光信号 ,无感应噪声之忧 ; 改善了温度特性。导铜线的负载能力的计算估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。说明:(1) 本节口诀对各种绝

13、缘线 ( 橡皮和塑料绝缘线 ) 的载流量 (安全电流 )不是直接指出,而是 “截面乘上一定的倍数”来表示,通过心算而得。由表 5 3 可以看出:倍数随截面的增大而 减小。“二点五下乘以九,往上减一顺号走”说的是2. 5mm及以下的各种截面铝芯绝缘线,其载流量约为截面数的 9倍。如2. 5mm导线,载流量为 2. 5X 9= 22. 5(A)。从4mrii及以 上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减I,即4X 8、6X 7、10X 6、16X 5、25X 4。“三十五乘三点五,双双成组减点五”,说的是35mm的导线载流量为截面数的3. 5倍,即35X 3. 5= 122.

14、5(A)。从50mrii及以上的导线, 其载流量与截面数之间的倍数关系变为 两个两个线号成一组,倍数依次减0. 5。即50、70mm导线的载流量为截面数的 3倍;95、120mm导线载流量是其截面积数的2. 5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25C的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25C的地区,导线载流量可按上述口诀计算方法算出, 然后再打九折即可; 当使用的不是铝线而是铜芯绝缘线, 它的载流量要 比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm铜线的载流量,可按 25mm2铝线计算。磁性印刷

15、与磁卡的制作磁性印刷是磁性油墨印刷的简称, 它以掺入氧化铁等磁性物质作为油墨颜料, 并通过一定的 印刷方式完成磁性记录体的制作, 使印刷品具有所要求的特殊功能。 近年来, 随着计算机科 技及网络技术的发展,磁性印刷品在很多领域得到应用,如银行存折、支票、身份证、信用 卡、电话卡、车船票及价目表等。1. 基本组成在磁性印刷中,构成磁性记录体的材料为磁性油墨。磁性油墨属特种油墨,其基本组成方式与普通印刷油墨相似, 即由颜料、连结料、 填充料和 辅料组成, 但磁性油墨所采用的颜料不是色素, 而是强磁性材料。 所谓强磁性材料是指将其 插入磁场中即被磁化, 即使去掉磁场也能保留磁性的特殊材料。 磁化前油

16、墨本身是没有磁性 的,之所以具有磁性, 是因为油墨配方中所用的颜料在经过磁场处理后具有保留磁性的能力。 当然, 影响磁性记录层特性的因素较多, 如颜料的磁性、 油墨中磁性颜料的含量、 磁性膜厚 度等,实验表明,干燥后的磁性膜的厚度以1020卩m为宜。此外,为了提高磁性膜表面的平滑度和耐磨性,印刷后可用合成树脂进行表面上光。在磁性油墨中起功能作用的是强磁性颜料,起印刷辅助作用的是与之相适应的油墨连结料, 以下将按材料特性进行介绍。2. 磁性颜料强磁性材料主要有铁(Fe)、钴(。0)、镍(Ni)等磁性元素,Fe-Mo和Fe-W强磁性合金, 以及具有 Mn-Al 和 Mn-Bi 那样的 NiAs 型

17、结构的合金等。而作为磁性油墨的颜料大多是铁素 体,即一般是用XO-Fe2O3表示的无机化合物, 其中X为二价金属离子,依据X的种类不同, 分别有锰 -铁素体、铁 -铁素体、铜 -铁素体等。将上述强磁性材料置入磁场中,改变磁场强 度,测试其所对应的磁化值,即可以得到强磁性材料的H-B曲线。H-B曲线是表示磁性材料特性的重要曲线,其中oa代表饱和磁化值,ob代表残余磁化值,oc代表磁阻值。检测常规印刷品质量, 往往是以印刷密度值和色相作为评价参数; 而对于磁性印刷, 则是以H-B曲线的残余磁化值和磁阻值作为印刷品质量评价的参数。例如,在计数与计量磁性记录体印刷中,强磁性材料的磁阻值应为 20000

18、30000A/m,残余磁化值为0.080.11T。因此, 进行磁性印刷必须了解强磁性材料的基本特性,合理选择强磁性材料,确定磁性油墨配方,这是获得优良磁性印刷品的关键。常用磁性颜料有氧化铁黑 (Fe3O4、氧化铁棕(丫 -Fe2O3)、含钴的丫 -Fe2O3和氧化铬(CrO2)。3. 连结料连结料是构成油墨流体的重要组分, 其主要作用是赋予颜料等固体粉状物以流动性, 使之在 研磨分散后形成浆状流体,印刷后在承印物表面干燥固定下来。油墨的流变性、 黏度、干性以及印刷性能等主要取决于连结料。因此, 高质量的磁性油墨不 光要有好的磁性材料作为颜料,也要采用性能优良的连结料。磁性油墨常用连结料有植物油

19、(亚麻油)和合成树脂(醇酸树脂)。1. 印刷方式磁性印刷过去通常采用平版、凸版印刷,以及显影磁性潜像三种方式。随着各种磁卡的普及,磁性印刷已开始采用凹印、 网印等多种印刷方式。此外,还有特种印 刷,如用喷射方式形成磁性图像;非冲击装置高速印刷;磁性胶囊印刷及磁性层转印方式。2. 性能要求大多数印刷油墨的功能是为了得到平面图文, 而磁性印刷则是利用印刷得到的特殊图文作为 检测和记录使用。 评价磁性油墨的性能除了以油墨的磁性参数作为重点指标外, 还应重视印 刷适性和油墨附着性。 例如,用于平版印刷的磁性油墨必须解决因磁性材料亲水而造成油墨 乳化的问题, 因为乳化现象会使油墨附着在空白部位, 减弱图

20、文部位的磁性, 给下一步的磁 性检测与判别带来不良影响。一般来说, 磁性颜料相对于其他油墨颜料,具有密度大、 含量 高的特点,因此,必须确保连结料和颜料的亲和性良好。为了改善磁性油墨的印刷适性和油墨附着性, 目前是采用把铁粉及其他永磁性物质和聚酰胺 树脂、热塑性环氧树脂、沥青纤维、聚苯乙烯、氧(杂)茚茚等树脂混合后,在融熔或液 体状态下使之悬浮于水性介质中,以得到适用于高速印刷的显影磁性潜像油墨。由于磁卡采用的磁记录材料的物理、 化学性能较稳定,可靠性好; 便于长期保存, 感化性能 好,且可反复使用;消除磁性后可再次录制,经济性好;读写设备简单,可实现小型、轻型 化,便于携带和使用;其种类及应

21、用领域正在逐步扩大。1. 磁卡的分类(1) 按用途分类:一般分为磁卡、密码卡、预付现金卡。(2)按制作及信息读取方式分类:一般分为磁卡、专用磁卡。2. 磁卡片基材料及规格用于磁卡的片基材料需要满足一些基本要求, 从使用条件考虑, 应具有相应的物理、 化学性 能,要求耐久性良好,在使用和长期保存期间,性能不发生较大变化。(1)材料类型:常用的磁卡片基材料可分为塑料片基和复合纸片基。塑料片基材料要求力 学性能良好,尺寸稳定,表面光洁,但需要进行印前处理;复合纸片基材料印刷适性好,不 需要进行印前处理,但其综合指标远不如塑料片基材料。(2)塑料片基材料的性能特点:塑料片基按材料组成可分为聚酯(涤纶)

22、片基、醋酸纤维 素及聚氯乙烯片基。几种常用片基材料的性能对比。(3)塑料磁卡的尺寸规格:国际标准化机构制定了塑料磁卡的尺寸规格,即ISO 规格,规定了标准磁卡尺寸为:长:85.47 85.72mm;宽:53.92 54.03mm;厚: 0.68 0.84mm。塑料磁卡 ISO 标准尺寸。另外,各国在满足 ISO 标准的前提下, 根据本国实际情况又制定了相应的国家标准。 如日本制定了 Jis X6301标准,其中分为I型和n型,i型卡的磁条位于塑料磁卡的背面;n型卡的磁条位于塑料磁卡的正面。3. 磁卡加工工艺(1)生产工艺流程设计T组版、校正T制版T印刷T覆膜T贴磁条T整平T断裁、成型T扩充加工

23、T磁检查、消磁T数据写入T最终检查T成品2)主要生产过程 磁加工和扩充加工是磁卡印制加工中的重要工序, 包括磁加工、 热压塑 字和着色、签名标条加工等。 磁加工,将6mm左右宽的磁条贴在磁卡的指定区域,经整平、磁检和消磁等工序,最后写 入必要的磁信息。 热压塑字和着色, 通过热压装置对磁卡表面进行文字凸起加工, 形成诸如编号、 有效期等 文字,也可采用色箔进行着色加工。 签名标条加工,采用丝网印刷或粘贴、热压的方式制作。浅谈接地技术电子设备可能受到电源传输耦合、传输线干扰、地电流干扰带来的电磁干扰的影响。 加接地与电磁屏蔽、加滤波器等方法都可以有效减小干扰。接地阻抗越小, 设备之间的电位差越小

24、,干扰对信号的影响也就越小。比如A B两个电路直接有信号相连,二者分别接地,相距1m当又一个上升时间20ms幅度50mA的脉冲电流流经此地线时,将产生感应电压其中,地线的电感约为每米 0.8uH 。若存在 TTL 电路, 那么这个感生出的电压就有可能造成电路的误翻转。信号接地的方式有悬浮接地、单点接地、多点接地。信号电路与外壳不相连时为悬浮接地, 这样可以防止外壳上的干扰信号直接 接近信号电路。 但一般不采用这种接法, 因为很难做到真正的悬浮, 且隔离后如果产生了静 电荷,还可能会出现放电的现象,反而带来了问题。单点接地就是信号电路的所有地都结在一起,只通过一个点接至接地系统,仍与外壳相隔离。

25、 这种方法不适用于频率较高的通信电子设备, 在模拟电路中经常采用。 因 为各接线之间存在分布电容,在高频时会产生较大的阻抗。多点接地适用于高频信号, 各点就近直接接入接地系统。可见当一个设备或电路板上同时拥有模拟和数字电路时, 对于接地的处理是 完全不同的。 而如今的电子设备、 仪器等普遍为数字和模拟的综合电路。 因为数字地主要是 如 TTL 或 CMO、SI/O 接口芯片等数字电路的地。 而模拟地则是放大器、 滤波器等模拟电路的 地。数字芯片供电端一般需要加去耦和滤波电容,且尽量靠近电源。在使用A/D和D/A集成芯片时, 一般芯片会同时存在模拟地和数字地, 两个地要分别接在一起, 然后仅在一

26、点处把 两个地共起来, 即模拟地都接在一起,数字地也都接在一起, 然后通过一个点接起来。 一半 会在两个地之间加上一个 0.1u 的电容或零欧电阻,滤掉数字电路部分的高频干扰。因为数 字信号变化速度快, 引起的噪声也就很大, 而模拟需要纯净的地, 尽量减少噪声对模拟信号 的影响。ADC/DAC勺分类与指标简介1. AD 转换器的分类 下面简要介绍常用勺几种类型勺基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、工-调制型、电容阵列逐次比较型及压频变换型。1)积分型(如 TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器 /计数器获得

27、数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 双积分 tlc7135 芯片资料2)逐次比较型(如 TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每 一位将输入电压与内置 DA转换器输出进行比较,经 n次比较而输出数字值。其电路规模属 于中等。其优点是速度较高、功耗低,在低分辩率( 12 位)时价格很高。TLC0831芯片资料(德州仪器公司(TI )推出的TLC0831/2是广泛应用的 8位A/D转换器。TLC0831是单通道

28、输入;TLC0832是双通道输入,并且可以软件配置成单 端或差分输入。串行输出可以方便的和标准的移位寄存器及微处理器接口)TLC0831可以外接高精度基准以提高转换精度,TLC0832的基准输入在片内与 VCC连接。TLC0831/2的操作非常类似 TLC0834/8 (更多输入通道),为以后升级提供便利。3)并行比较型 /串并行比较型(如 TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高, n 位的转换需要 2n-1 个比较器,因此电路规模也极大,价格也高,只适用于 视频AD转换器等速度特别高的领域。串并行比较型AD结构上介于并

29、行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash( 半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined )型AD,现代的分级型 AD中还加入了对多次转换结 果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。tLC5510芯片资料(TLC5510是CMOS 8位、20MSP濮拟量转数字量的转换器( ADC,它 采用半闪速结构 (semi-flash architecture )。单

30、5V工作电源且功耗只有 100mW(典型值) 的功率。内含采样和保持电路,具有高阻抗方式的并行接口和内部基准电阻。与闪速转换器( flash converters )相比,半闪速结构减少了功率损耗和晶片尺寸。通过在2 步过程( 2step process )中实现转换,可以极大地减少比较器的数目。转换数据的等 待时间为 2.5 个时钟。内部基准电阻使用 VDDA可产生标准的2V满度转换范围。为了实现此选项仅需外部跳线器, 这样减小了对外部基准或电阻的需求。差分线性度在25C温度下为0.5LSB,在整个工作温度范围内的最大值是 0.75LSB。用差分增益1 %和差分相位为0.7%可以规定动态特性

31、范围。4)2 - (Delta-Sigma) 调制型(如 AD7705)工-型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。 原理上近似于积分型, 将输入电压转换成时间 (脉冲宽度 )信号, 用数字滤波器处理后得到数字值。 电路的数字部分 基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。5)电容阵列逐次比较型电容阵列逐次比较型 AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。- 般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为

32、电容阵列式的。6) 压频变换型(如 AD650)压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉 冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。2. AD转换器的主要技术指标1) 分辩率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。2) 转换速率(Co

33、nversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD逐次比较型AD是微秒级属中速 AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千 / 百万次(kilo / Millio n Samples per Seco nd)。3) 量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即

34、有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD (理想AD的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1LSB 1/2LSB。4) 偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。5) 满刻度误差(Full Scale Error)满度输出时对应的输入信号与理想输入信号值之差。6) 线性度(Linearity)实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误 差。其他指标还有:绝对精度 (Absolute Accuracy) ,相对精度(Relative Accuracy) ,微分非 线性,单调性

35、和无错码,总谐波失真( Total Harmonic Distotortion 缩写THD和积分非 线性。3. DA转换器DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数 DA转换器由电阻阵列和 n个电流开关(或电压开关)构成。按数字输入值切 换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内 部的。一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器,如果经电流椀缪棺缓笫涑觯蛭缪故涑鲂?/FONT DA转换器。此外,电压开关型电路为直接输出电压型

36、DA转换器。1)电压输出型(如 TLC5620)电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻 抗输出。 直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟, 故常作为高速DA转换器使用。2)电流输出型 (如 THS5661A)电流输出型DA转换器很少直接利用电流输出, 大多外接电流一电压转换电路得到电压输出, 后者有两种方法: 一是只在输出引脚上接负载电阻而进行电流电压转换,二是外接运算放大器。 用负载电阻进行电流电压转换的方法, 虽可在电流输出引脚上出现电压, 但必须在 规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。

37、此外, 大部分CMOSDA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外 接运算放大器进行电流电压转换时, 则电路构成基本上与内置放大器的电压输出型相同, 这 时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使响应变慢。此外,这种 电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。3)乘算型(如 AD7533)DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得 到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型 DA转换器。乘算型DA转换器一般不仅可以进行乘法运算, 而且可以作为使输入信号数字化地衰减的衰减器及

38、对输入信 号进行调制的调制器使用。4)一位DA转换器一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输 出,然后用数字滤波器作平均化而得到一般的电压输出 (又称位流方式 ) ,用于音频等场合。4. DA 转换器的主要技术指标:1) 分辩率 (Resolution)指最小模拟输出量(对应数字量仅最低位为 1)与最大量(对 应数字量所有有效位为 1)之比。2)建立时间 (Setting Time) 是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。一般地,电流输出DA建立时间较短,电压输出DA

39、则较长。其他指标还有线性度 (Linearity) ,转换精度,温度系数 / 漂移。蓄电池自行放电的原因及预防蓄电池在存放过程中,会或多或少地产生自行放电现象。正常的蓄电池,每存放 1天,电能容量约损失1%-2%即一个充足了电的蓄电池,贮存1个月,电能容量大约损失一半。一、自行放电原因1. 蓄电池外部有搭铁或短路。当蓄电池引出导线与机体搭铁,或蓄电池壳体上有扳手、铁丝等导体将正负极连通,将会产生剧烈自行放电,很快将电能放完。另外,当蓄电池外壳、顶盖上有溅漏的电解液时,也可将正负极接线柱连通而放电。2. 蓄电极隔板腐蚀穿孔、损坏,或正、负极板下的沉积物过多,这时正、负极板便直接连通而短路,引起蓄

40、电池内部自行放电。3. 电解液不纯,含有杂质,或添加的不是纯净水, 这时电解液中的杂质随电解液的流动附着于极板上,各杂质之间形成一定的电位差,便会在蓄电池内部形成许多自成通路的微小电池,使蓄电池常处于短路状态。试验表明,电解液中若含有1%勺铁,蓄电池充足电后会在24小时之内将电能全部放完。4. 蓄电池极板本身不纯,含杂质较多,也会形成许多微小电池而自行放电。5. 蓄电池存放过久,电解液中的水与硫酸,因比重不同而分层,使电解液密度上小下大,形成电位差而自行放电。二、预防措施1. 加强保养,保持蓄电池上盖清洁。2. 保证电解液有较高的纯度,在配制电解液、添加蒸馏水时,都应严防杂质进入。3. 蓄电池

41、在存放过程中应经常充电,使电解液密度保持均匀,并使液面不致下降。4. 冲洗蓄电池外表时应预防污水从加液口盖或通气孔处进入蓄电池内部。5. 隔板、极板损坏时应及时修复或更换。6. 更换电解液时,一定要将蓄电池内的残液清除干净。燃料电池与普通蓄电池的区别燃料电池是由电池负极一侧的氢极 (燃料极) 输入氢气, 和在正极侧的氧化极 (空气或氧气) 输入空气或氧气。 在正极与负极之间未电解质, 电解质将两极分开。 根据不同种类的燃料电 池采用了不同的电解质, 有酸性、碱性、 熔融盐类或固体电解质。 在燃料电池中燃料与氧化 剂经催化剂的作用,在能量转换过程中,经过电化学反应生成电能和水(H2O,因此,不会

42、产生氮氧化物(NOX和碳氢化合物(HC等对大气环境造成污染的气体排放。燃料电池与普通蓄电池的区别在于:1. 燃料电池是一种能量转换装置,在工作时必须有能量(燃料)输入,才能产出电能。普 通蓄电池是一种能量储存装置, 必须先将电能储存到电池中, 在工作时只能输出电能, 在工作时不需要输入能量,也不产生电能,这是燃料电池与普通电池本质的区别。2. 一旦燃料电池的技术性能确定后,其所能够产生的电能只和燃料的供应有关,只要供给 燃料就可以产生电能, 其放电特性是连续进行的。 普通蓄电池的技术性能确定后, 只能在其 额定范围内输出电能,而且必须是重复充电后才可能重复使用,其放电特性是间断进行的。3. 燃

43、料电池本体的质量和体积并不大,但燃料电池需要一套燃料储存装置或燃料转换装置 和附属设备, 才能获得氢气, 而这些燃料储存装置或燃料转换装置和附属设备的质量和体积 远远超过燃料电池本身, 在工作过程中, 燃料会随着燃料电池电能的产生逐渐消耗, 质量逐 渐减轻(指车载有限燃料)。普通蓄电池没有其他辅助设备,在技术性能确定后,不论是充满电还是放完电,蓄电池的质量和体积基本不变。4. 燃料电池是将化学能转变为电能,普通蓄电池也是将化学能转变为电能,这是它们共同之处, 但燃料电池在产生电能时, 参加反应的反应物质在经过反应后, 不断地消耗不再重复 使用,因此,要求不断地输入反应物质。 普通蓄电池的活性物

44、质随蓄电池的充电和放电变化, 活性物质反复进行可逆性化学变化,活性物质并不消耗,只需要添加一些电解液等物质。电池内阻及其测量方法众所周知每个电池都有内阻。 不同类型的电池内阻不同。 相同类型的电池, 由于内部化学特 性的不一致,内阻也不一样。电池的内阻很小,我们一般用微欧或者毫欧的单位来定义它。内阻是衡量电池性能的一个重要技术指标。 正常情况下, 内阻小的电池的大电流放电能力强, 内阻大的电池放电能力弱。从电工基础原理来解释, 我们可以把电池和内阻分开考虑, 分为一个完全没有内阻的电池串 接上一个阻值很小的电阻。此时如果外接的负载轻,那么分配在这个小电阻上的电压就小, 反之如果外接很重的负载,

45、 那么分配在这个小电阻上的电压就比较大, 就会有一部分功率被 消耗在这个内阻上(可能转化为发热,或者是一些复杂的逆向电化学反应) 。一个可充电电 池出厂时的内阻是比较小的, 但经过长期使用后, 由于电池内部电解液的枯竭, 以及电池内 部化学物质活性的降低, 这个内阻会逐渐增加, 直到内阻大到电池内部的电量无法正常释放 出来,此时电池也就“寿终正寝”了。 绝大部分老化的电池都是因为内阻过大的原因而造成 无使用价值,只好报废。1. 内阻不是一个固定的数值。麻烦的一点是, 电池处于不同的电量状态时, 它的内阻值不一样; 电池处于不同的使用寿命 状态下,它的内阻值也不同。从技术的角度出发,我们一般把电

46、池的电阻分为两种状态考虑:充电态内阻和放电态内阻。(1) 充电态内阻指电池完全充满电时的所测量到的电池内阻。(2) 放电态内阻指电池充分放电后(放电到标准的截止电压时)所测量到的电池内阻。一般情况下放电态的内阻是不稳定的, 测量的结果也比正常值高出许多, 而充电态内阻相对 比较稳定, 测量这个数值具有实际的比较意义。 因此在电池的测量过程中, 我们都以充电态 内阻做为测量的标准。2. 内阻无法用一般的方法进行精确测量或许大家会说,高中物理课上有教用简单公式+电阻箱计算电池内阻的方法但物理课本上教的用电阻箱推算的算法精度太低,只能用于理论的教学,在实际应用上根本无法采用。电池的内阻很小, 我们一

47、般用微欧或者毫欧的单位来定义它。 在一般的测量场合, 我们要求 电池的内阻测量精度误差必须控制在 5以内。这么小的阻值和这么精确的要求必须用专 用仪器来进行测量。3. 目前行业中应用的电池内阻测量方法。3.1 直流放电内阻测量法根据物理公式 R=U/I ,测试设备让电池在短时间内 (一般为 2-3s )强制通过一个很大的恒定 直流电流(目前一般使用 40A-80A 的大电流), 测量此时电池两端的电压,并按公式计算出 当前的电池内阻。这种测量方法的精确度较高,控制得当的话,测量精度误差可以控制在 0.1 以内。 但此法有以下明显的不足之处:(1)只能测量大容量电池或者蓄电池,小容量电池无法在2

48、-3s 内负荷 40A-80A 的大电流;(2)当电池通过大电流时,电池内部的电极会发生极化现象,产生极化内阻。故测量时间 必须很短,否则测出的内阻值误差很大;(3)大电流通过电池对电池内部的电极有一定损伤。3.2 交流压降内阻测量法因为电池实际上等效于一个有源电阻, 因此我们给电池施加一个固定频率和固定电流 (目前 一般使用1kHz频率,50mA小电流),然后对其电压进行采样,经过整流、滤波等一系列处 理后通过运放电路计算出该电池的内阻值。交流压降内阻测量法的电池测量时间极短,一般在100ms左右,几乎是一按下测量开关就测完了。这种测量方法的精确度也不错,测量精度误差一般在1 %2%之间。此

49、法也存在下述优缺点:(1)使用交流压降内阻测量法可以测量几乎所有的电池,包括小容量电池。笔记本电池电 芯的内阻测量一般都用这种办法。(2)交流压降测量法的测量精度很可能会受到纹波电流的影响,同时还有谐波电流干扰的可能。这对测量仪器电路中的抗干扰能力是一个考验。(3)用此法测量,对电池本身不会有太大的损害。(4)交流压降测量法的测量精度不如直流放电内阻测量法。在某些内阻在线监控的应用中,只能采用直流放电测量法而无法采用交流压降测量法。3.3 测试仪器的元件误差及测试用的电池连接线问题。无论是上述哪一种方法, 都存在一些很容易被我们忽视的问题, 那就是测试仪器本身的元件 误差和用于连接电池的测试线

50、缆问题。 因为要测量的电池的内阻很小, 线路的电阻就要考虑 进去了。一条短短的从仪器到电池的连接线本身也存在电阻(大约也是微欧级), 还有电池 与连接线的接触面也存在接触电阻,这些因素必须都在仪器的内部事先做好误差调节。所以,正规的电池内阻测试仪一般都配有专用的连接线和电池固定架子。4. 总结很多老化的电池其实内部电量还是很多, 只是内阻过大放不出电来, 实在可惜。 但电池的内 阻一旦增加后, 要想人为降低这个内阻值是非常之难的。 因此对于已经老化的电池, 我们即 使想出很多办法来“激活”它, 比如大电流冲击, 小电流浮充,放冰箱冷却等等, 但大多无 济于事,回天乏术。在了解了上述知识之后,

51、我们基本可以知道, 挑选电池要尽可能地挑选内阻较小的电池。 在 进行电池组的组合过程中 (例如笔记本的电池组组合) ,我们要尽可能选用内阻一致的电池。 另外很重要的一点, 电池久置不用, 其内阻也会不断增加。 所以建议大家还是要经常使用电 池来保持电池内部化学物质的活性。还有就是不要选购旧的电池,比如拆机的电芯。接地电阻的计算与测量路灯设施的接地保护事关国家财产和人民生命安全的大事. 为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻 . 理论上,接地电阻越小,接触电压和跨步电压就越 低,对人身越安全 . 但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电 阻率较高的地

52、区不易做到 . 在实践中,可利用埋设在地下的各种金属管道 ( 易燃体管道除外 ) 和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体 . 由于人工接地装置与自然接 地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资 .一、接地电阻值的规定在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4 Q,重复接地电阻应小于或等于10Q .而电压1000V以下的中性点不接地系统中,一般规定接地电阻 R为4Q .因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4 Q .二、人工接地装置接地电阻的计算人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地

53、体等.此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、 水平接地体,这里只简要介绍上述两种接地电阻的计算 .1 、垂直埋设接地体的散流电阻垂直埋设的接地体多用直径为50mm长度2-2 . 5m的铁管或圆钢,其每根接地电阻可按下式求得:Rgo = p Ln(4L/d)/2 n L式中:p 土壤电阻率(Q /cm)L接地体长度(cm)d 接地铁管或圆钢的直径(cm)为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0. 5-0 . 8m深处.若垂直接地体采用角钢或扁钢 (见图 1),其等效直径为 :等边角钢d = 0. 84b扁钢d = 0. 5b为达到所要求的接地电阻值, 往往需埋设多根垂直接体, 排列成行或成环形, 而且相邻接地 体之间距离一般取接地体长度的 1-3 倍,以便平坦分布接地体的电位和有利施工 .这样,电 流流入每根接地体时, 由于相邻接地体之间的磁场作用而阻止电流扩散, 即等效增加了每根接地体的电阻值, 因而接地体的合成电阻值并不等于各个单根接地体流散电阻的并联值, 而相差一个利用系数,于是接地体合成电阻为Rg= Rgo/( n L*n)式中,Rgo-单根垂直接地体的接地电阻(Q );n L接地体的利用系数;n-垂直接地体的并联根数.接地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论