六年级奥数分数巧算学生版_第1页
六年级奥数分数巧算学生版_第2页
六年级奥数分数巧算学生版_第3页
六年级奥数分数巧算学生版_第4页
六年级奥数分数巧算学生版_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、分数的速算与巧算1、裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握 裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算, 使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨、裂项综合(一)、“裂差”型运算(1)对于分母

2、可以写作两个因数乘积的分数,即,形式的,这里我们把较小的数写在前面,即 a b,那a b/人 1111a 有()a b baa b(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1n (n 1) (n2)形式的,我们有:n (n 1) (n 2) (n 3)1n (n 1) (n 2)1112 n (n 1) (n 1)(n2)111 n (n 1) (n 2) (n 3) 3 n (n 1) (n 2)(n 1) (n 2) (n 3)裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是 x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是

3、1的运算。(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)里_b_a_b_11a ba ba bba2.2a ba bb2a b裂和型运算与裂差型运算的对比:4裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。三、整数裂项1 1 2 2 3 3 4 (n 1) n -(n 1) n (n 1)31(2) 1 2 3 2 3 4 3 4 5 . (n 2) (n 1) n (n

4、 2)(n 1)n(n 1)4二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.三、循环小数化分数0.abab990.0abab 199 10ab;990c , abc a0.abc ,9901、循环小数化分数结论:纯循环小数混循环小数分子循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n个9,其中n等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧2、单位分数的拆分:11111111111 例:= = = = = 一10 20 2

5、0分析:分数单位的拆分,主要方法是:从分母n的约数中任意找出两个 m和n,有:11(m n) mn _ 11n n(m n) n(m n) n(m n) a b本题10的约数有:1,10,2,5.。例如:选1和2,有:11(1 2)121110 10(1 2) 10(1 2) 10(1 2) 30 15本题具体的解有:11111111110 11 110 12 60 14 35 15 30例题精讲模块一、分数裂项例 11_1 1 1 1 11234 2345 34566789 789 10312 3 4计算:317 18 19 20198 9 10【解析】如果式子中每一项的分子都相同,那么就是

6、一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2, 4, 6,这一公差为 2的等差数歹u(该数列的第n个数恰好为n的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为 2n 3 , 所以2n 3232, 再将每一项的nn1n 2 n 1n 2n n1n2n 1 n 23.一3分别加在一起进行裂项.后面的过程与前面的方法相同.n n 1 n 2571719【巩固】计算:1155 ( 一- l 17一 一-)2 3 4 3

7、4 58 9 10 9 10 111210 11 13 14【巩固】【例3】例4 【解析】计算:312 4 592 3 4l 1011 2 l 100本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。此类问题需要从最简单 的项开始入手,通过公式的运算寻找规律。从第一项开始,对分母进行等差数列求和运算公式的小、占 112112代入有,1(1 1) 11212(1 2) 22 322例5 【解析】例6 1111231517191这题是利用平方差公式进行裂项:121 12(1 2) (1 3)1122111 13122a b (a b) (a b),119991 .(1 2) (1 3

8、) l (16【例7】【解析】找通项an(1 n) n2(1 n) n 12n (n 1)n (n 1) 2121231234l123l5022 32 3 42 3 l 508【例8】222112)221232122223421222262,3,3-3112,3-3123313-3-323431323263-2-212a2 nn(n1) (2n1)【解析】622n12(11 )an3-311100 5000 2200 5000 233 n2 n(n 1)23n (n1)3()n n 14例9 22计算:j,3 l2131992992 1(项公式:an2992999900 5000本题的通项公式

9、为2n-2n 100n 5000没办法进行裂项之类的处理.注意到分母2 n 100n 5000 5000 n 100 n5000 100 n 100100 n ,可以看出如果把n换成100 n的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一个502_2 505000 5000.将项数和为100的两项相加,得2n-2n 100n 5000222100 nn 100 n22100 n 100 100 n 5000 n 100n 50002n2 200n 100002n 100n 5000所以原式 2 49 1 99.(或者,可得原式中 99项的平士匀数为1,所以原式1 99

10、99)【例10】24120 211122z212122212lt21222102_ 一一 ,1【解析】虽然很容易看出2 311 一一, 一1 -可是再仔细一看,并没有什么效果,45因为这不象分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式一.,1于是我们又有-2一2一2122232号后面括号里的式子也恰好有模块二、换元与公式应用【例11】计算:1333537393【例12】计算:一n (n 1) (2n 1).减号前面括号里的式子有10项,减10项,是不是“一个对一个”呢?133134135136【例13】2,22计算:(246_1 2 3113133153166

11、3则 3s 3 11321331111不了,3s s 3落整理可得364s 1 一 72922100 ) (19 10 9 83252992)15【例14】计算:22200020012000 2001【例15】20078.58.5 1.51.5101600.3【例16】计算:(1 111-)(二11二)(11111二)(二-)三、循环小数与分数互化【例17】 计算:0.&+0.125+0.3+0.16&,结果保留三位小数.则正确结果该【例18】 某学生将1.2&乘以一个数a时,把1.2&误看成1.23,使乘积比正确结果减少0.3.是多少?【例19】有8个数,0.&, 2,5, 0.5&,a,1

12、3是其中6个,如果按从小到大的顺序排列时,第 4个数是3 947 250.5&,那么按从大到小排列时,第4个数是哪一个数?【例20真分数a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a7是多少?【例21】 陋和,化成循环小数后第 100位上的数字之和是 2009287【解析】如果将 02和工转化成循环小数后再去计算第100位上的数字和比较麻烦,通过观察计算我200928720021们发现出2 1,而1 0.9,则第100位上的数字和为 9.2009 28711111111111例22 45注:这里要先选 10的三个约数,比如 5、2和1,表示成连减式 5-2-1和连加式5+2+1.【例23】所有分母小于30并且分母是质数的真分数相加,和是【例2例0 11右2004 ab都是四位数,且 ab,那么满足上述条件的所有数对( a,b)是课后练习:练习1.1212 12 3312 3 4练习2.(2i)(389(8 9) (9 6)练习3.计算:133353l 993练习4.计算:12007120081200812007练习 5.0.15 0.218cc 110.3 ;2.2& 0.& 11 (结果表示成循环小数)320062006【备选4】计算:621 739 458126 358 947739 458 378358 947 20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论