版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直线与圆、圆与圆的位置关系 知识梳理 知识梳理 相交相交 两两 唯一唯一 相切相切 知识梳理 dr 0 相离相离 dr dr 知识梳理 两圆外离两圆外离 两圆外切两圆外切 | r1-r2|d r1r2 两圆内切两圆内切 d|r1r2| 知识梳理 相交于两点相交于两点 222 1 2 22 2 xyr xdyr 知识梳理 相切相切(外切或内切外切或内切) 外离或内含外离或内含 地理位置地理位置几何特征几何特征代数特征(方程联立)代数特征(方程联立) 相离相离无实数解无实数解(0) 外切外切drr 相交相交rrdrr 内切内切一组实数解一组实数解(0) 内含内含drr 一组实数解一组实数解(0)
2、两组实数解两组实数解(0) drr 无实数解无实数解(0) 知识梳理 要点探究 要点探究 探究点探究点1直线与圆的位置关系直线与圆的位置关系 要点探究 要点探究 【思路【思路】 (1)设出直线方程,利用点到直线的距离求设出直线方程,利用点到直线的距离求 得;得; (2)根据垂直关系设出两条直线的方程,然后利用弦根据垂直关系设出两条直线的方程,然后利用弦 长相等来求长相等来求. 2 2 3 41 2 d 要点探究 要点探究 2 41 5 1 1 nm kk k 20 30 mn mn 80 50 mn mn 要点探究 3 13 , 22 51 , 22 【点评】【点评】研究直线与圆的相交弦长问题
3、主要有两条研究直线与圆的相交弦长问题主要有两条 途径:途径:(1)利用特殊的直角三角形;利用特殊的直角三角形;(2)代入弦长公式代入弦长公式d |x1x2|求解除直接求弦长外,还可以借助相求解除直接求弦长外,还可以借助相 交关系设置诸如定值等的综合问题如下面变式题:交关系设置诸如定值等的综合问题如下面变式题: 2 1k 要点探究 要点探究 要点探究 探究点探究点2圆的切线问题圆的切线问题 【思路】【思路】 (1)依据截距关系确定切线的斜率,设出直依据截距关系确定切线的斜率,设出直 线方程,利用点到直线的距离等于半径求解;线方程,利用点到直线的距离等于半径求解; (2)首先确定首先确定p点的轨迹
4、方程,从而确定点的轨迹方程,从而确定|pm|最短时点最短时点 p的坐标满足的关系式的坐标满足的关系式. 要点探究 要点探究 22 11 11 9 20 2430 xy xy 33 , 10 5 【点评】【点评】 圆的切线问题常用圆心到直线的距离等于圆的切线问题常用圆心到直线的距离等于 半径解决;求过某点的圆的切线问题,首先确定定点与半径解决;求过某点的圆的切线问题,首先确定定点与 圆的位置关系,若点在圆上,则切线只有一条;若点在圆的位置关系,若点在圆上,则切线只有一条;若点在 圆外,则过该点的切线有两条,同时求解时应注意斜率圆外,则过该点的切线有两条,同时求解时应注意斜率 不存在的直线不存在的
5、直线.切线长、半径、点到圆心的距离以及点到切线长、半径、点到圆心的距离以及点到 切点的距离构成的图形是易考点,如下面变式题:切点的距离构成的图形是易考点,如下面变式题: 要点探究 要点探究 【思路【思路】 寻找出相关的直角三角形,解直角三角形寻找出相关的直角三角形,解直角三角形 即可即可. 要点探究 要点探究 探究点探究点3两圆的位置关系两圆的位置关系 【思路【思路】 本题的关键是求得圆的公共弦方程本题的关键是求得圆的公共弦方程. 要点探究 1 1 a 【点评】【点评】 (1)求解两圆的公共弦所在直线的方程可求解两圆的公共弦所在直线的方程可 由两圆的方程作差消去二次项即可;由两圆的方程作差消去
6、二次项即可;(2)圆的公切线条圆的公切线条 数的关键是判断两圆的位置关系:当两圆内含时公切线数的关键是判断两圆的位置关系:当两圆内含时公切线 有有0条;当两圆内切时公切线有条;当两圆内切时公切线有1条;当两圆相交时公切条;当两圆相交时公切 线条数为线条数为2条;当两圆外切时公切线有条;当两圆外切时公切线有3条;当两圆相离条;当两圆相离 时公切线有时公切线有4条条 要点探究 要点探究 【思路【思路】 求出两圆的交点坐标,利用圆心到两交点求出两圆的交点坐标,利用圆心到两交点 的距离都相等于半径,求出圆心和半径,也可以利用两的距离都相等于半径,求出圆心和半径,也可以利用两 交点连结所得弦的垂直平分线
7、与直线交点连结所得弦的垂直平分线与直线xy0的交点,的交点, 就是圆心;还可以利用圆系,先设出过两圆点的圆的方就是圆心;还可以利用圆系,先设出过两圆点的圆的方 程,再求系数程,再求系数. 要点探究 22 22 210240 2280 xyxy xyxy 要点探究 420 1640 0 22 ef df de 6 6 8 d e f 要点探究 探究点探究点4弦长、中点弦问题弦长、中点弦问题 要点探究 【思路【思路】 (1)借助于特殊三角形求解;借助于特殊三角形求解;(2)利用垂直关利用垂直关 系得出中点轨迹系得出中点轨迹. 要点探究 22 45 412240 yk xyxy 要点探究 122 122 24 1 11 1 k xx k x x k 要点探究 ad pd 【点评】【点评】 (1)已知弦长求解直线方程与已知直线方已知弦长求解直线方程与已知直线方 程求弦长方法类似,用特殊三角形或直接代入弦长公式程求弦长方法类似,用特殊三角形或直接代入弦长公式 求得直线斜率即可;求得直线斜率即可;(2)求中点的轨迹方程常用的方法求中点的轨迹方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术规范:物联网数据传输安全标准
- 2026年物流管理供应链优化与仓储管理试题
- 2026年职业素养与实践能力提升试题
- 2026年食品卫生安全法规考试题库确保食品安全与健康
- 2026年电子通信电子设备调试与维护实操考试题
- 2026年5S环境管理标准下的办公室管理测试
- 2026年机械原理与机械设计专业知识题库
- 2026年语言矫治模拟题目发音纠正与语音清晰度训练
- 2026年AI技术专家认证考试题集与答案详解
- 2026年拼多多市场营销应届生面试题集
- 38000t化学品船施工要领
- 极兔快递合作合同协议书
- 加油站安全环保课件
- co中毒迟发性脑病诊断与治疗中国专家共识解读
- 新版预算管理制度
- 2024版人教版八年级上册英语单词表(含音标完整版)
- “转作风、换脑子、促管理”集中整顿工作心得体会
- 提高幕墙主龙骨安装合格率(QC)
- 高层楼宇门窗安装安全施工方案
- 河南省天一大联考2024-2025学年高一化学上学期期末考试试题
- 高血压病的中医药防治
评论
0/150
提交评论