韦达定理的运用_第1页
韦达定理的运用_第2页
韦达定理的运用_第3页
韦达定理的运用_第4页
韦达定理的运用_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、叮叮小文库一元二次方程跟与系数关系(韦达定理)的应用一 教材分析本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的 关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已 知的认知结构及原由的知识水平,制定如下教学目标:二 教学目标1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。2、提高学生综合应用能力三 教学重难点重点:运用韦达定理解决方程中的问题难点:如何运用韦达定理四 教学过程(一)回顾旧知,探索新知上节课我们学习了韦达定理,我们回忆一下什么是韦达定理?2如果ax

2、bx c 0(a0)的两个根是 x1 , x 2bc那么 Xi X2, Xi X2aa老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢 ?今天我们将来探讨这个问题。)(二)举例分析例已知方程5x2 kx 6 0的一根是2,求它的另一根及k的值。请同学们分析解题方法:思路:应用解方程的方法,带入法解法一 :把 X=2代入方程求的K=-7把K=-7代入方程:5x2 7x 603运用求根公式公式解得x1 2, x25提问:同学们还有没有其它方法呢 ?启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方

3、程。解法二:设方程的两根为Xi,X2,则Xi 2,X2是未知数用韦达定理建立关系式2x265, X2kX2 2 ,5k7Xi2, X23,k57对比分析,第二种方法更加简单总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值例2 不解方程,求一元二次方程2x2 + 3x 1 = 0两根的(1 )平方和;(2)倒数和6方法小结:运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用x,X2,X, x2的代数式表示。(2)格式、步骤要求规范:将方程的两根设为。求出X, x2,x, x2的值。将所求代数式用X, X2, X, X2的代数式表示。 将x, X2, X, X2的值代人并求值。三综合运用巩固新知,求一个一元二次方程,使它的两根分别是一;-因因3T 1 +一 (3 * 3 寺 W 13所以/+二盟-二=0即6, + 5X-50 =0是所求的方程Q63x x2、设2是方程2x2 4x 3 0的两根,利用根与系数的关系,求下列各式的值。2 X,x2X2X,一X,x23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论