版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 数列 1.2数列的函数特性 1.理解数列的几种表示方法. 2.能从函数的观点研究数列. 学习目标 题型探究 问题导学 内容索引 当堂训练 问题导学 思考 知识点一数列的表示方法 以数列2,4,6,8,10,12,为例,你能用几种方法表示这个 数列? 答案 对数列2,4,6,8,10,12,可用以下几种方法表示: 通项公式法:an2n. 递推公式法: 列表法: n123k an2462k 图像法: 梳理梳理 数列的表示方法有 法、 法、列表法、递推公式法. 通项公式图像 知识点二数列的增减性 图像上升,an随n增大而增大. 思考 答案 观察知识点一中数列2,4,6,8,的图像,随着n的增
2、大,an 有什么特点? 梳理梳理 一般地,按项的增减趋势分类,从第2项起,每一项都大于它前面的一 项,即an1 an,那么这个数列叫作 ;从第2项起,每一项都 小于它前面的一项,即an1 an,那么这个数列叫作 ;各项相 等的数列叫作 ;从第2项起,有些项小于它的前一项,有些项小 于它的前一项的数列叫作 . 递增数列 递减数列 常数列 0对任意nN恒成立. (2n1)min30, 3. 跟踪训练跟踪训练2若数列n2n是递增数列,则实数的取值范围是 _. (3,) 答案解析 命题角度命题角度2求数列中的最大项与最小项求数列中的最大项与最小项 例例3在数列an中,an(n1)( )n(nN). 证
3、明 (1)求证:数列an先递增,后递减; (2)求数列an的最大项.解答 反思与感悟 数列中最大项与最小项的两种求法 (1)若求最大项an,则an应满足 若求最小项an,则an应满足 (2)将数列看作一个特殊的函数,通过求函数的最值来解决数列的最值 问题,但此时应注意nN这一条件. 跟踪训练跟踪训练3已知数列an的通项公式为an ,求数列an的最 大项和最小项.解答 当n2时,an1an0,即an10,即an1an; 当n4时,an1an0,即an1an. 又当n3时,an2. 所以a4a5an2a1a2a3.故数列an的最大项为a44,最小项 为a30. 当堂训练 1.已知数列an的通项公式是an,则这个数列是 A.递增数列 B.递减数列 C.常数列 D.摆动数列 答案解析 123 an1an10,也可用作商法与1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电话销售策略总结
- 旅游行业导游服务技巧总结
- 冷链物流保安工作总结
- 2023年广西壮族自治区河池市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年吉林省白山市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年辽宁省鞍山市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年四川省绵阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 青海省果洛藏族自治州(2024年-2025年小学六年级语文)部编版阶段练习(下学期)试卷及答案
- 2024年楼梯配件项目资金申请报告代可行性研究报告
- 2025年梅毒诊断抗原项目申请报告
- 广东省佛山市南海区三水区2022-2023学年七年级上学期期末历史试题(无答案)
- 重视心血管-肾脏-代谢综合征(CKM)
- 学术英语(理工类)
- 浅谈“五育并举”背景下中小学劳动教育的探索与研究 论文
- 大树的故事 单元作业设计
- 六年级道德与法治学情分析
- 新加坡双语教育政策发展研究
- (全国通用版)小学英语四大时态综合练习(含答案)
- 走近翻译学习通超星课后章节答案期末考试题库2023年
- 互联网体检对话版
- 西方宪政民主主义思潮34张课件
评论
0/150
提交评论