下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、增分强化练(二十二)1(2019泉州质检)在四棱锥PABCD中,PD平面ABCD,ABAD,ADBC,AB1,AD2BC,PD.(1)求证: 平面PBD平面PAC;(2)M为棱PB上异于B的点,且AMMC,求直线AM与平面MCD所成角的正弦值解析:(1)证明:在RtABC与RtABD中,因为, ,所以,ABCDAB90,即ABCDAB,所以ABDBCA.因为ABDCBD90,所以BCACBD90,所以ACBD.因为PD平面ABCD,AC平面ABCD,所以PDAC,又BDPDD,所以AC平面PBD,又AC平面PAC, 所以平面PBD平面PAC. (2)过A作AEDP,因为PD平面ABCD,所以A
2、E平面ABCD,即AE,AB,AD两两相垂直,以A为原点,AB,AD,AE所在的直线为x,y,z轴,建立如图所示的空间直角坐标系, 因为AB1,AD2BC,PD,所以A(0,0,0),B(1,0,0),C,D(0,0),P(0,),(1,0,0),(1,), 设,(0,1则(1,),(,). 因为AMMC,所以0,即(1)()320,解得6220,0或.因为(0,1,所以.所以,即M.所以,设n(x0,y0,z0)为平面MCD的一个法向量,则,所以,所以取n, 设直线AM与平面MCD所成角为,所以sin |cos,n|,所以直线AM与平面MCD所成角的正弦值.2(2019济宁模拟)如图,在直角
3、梯形ABED中,ABDE,ABBE,且AB2DE2BE,点C是AB中点,现将ACD沿CD折起,使点A到达点P的位置(1)求证:平面PBC平面PEB;(2)若PE与平面PBC所成的角为45,求平面PDE与平面PBC所成锐二面角的余弦值解析:(1)证明:ABDE,AB2DE,点C是AB中点,CBED,CBED,四边形BCDE为平行四边形,CDEB,又EBAB,CDAB,CDPC,CDBC,CD平面PBC,EB平面PBC,又EB平面PEB,平面PBC平面PEB.(2)由(1)知EB平面PBC,EPB即为PE与平面PBC所成的角,EPB45,EB平面PBC,EBPB,PBE为等腰直角三角形,EBPBB
4、CPC,故PBC为等边三角形,取BC的中点O,连结PO,则POBC,EB平面PBC,又EB平面EBCD,平面EBCD平面PBC,又PO平面PBC,PO平面EBCD,以O为坐标原点,过点O与BE平行的直线为x轴,CB所在的直线为y轴,OP所在的直线为z轴建立空间直角坐标系如图,设BC2,则B(0,1,0),E(2,1,0),D(2,1,0),P(0,0,),从而(0,2,0),(2,1,),设平面PDE的一个法向量为m(x,y,z),则由得,令z2得m(,0,2),又平面PBC的一个法向量n(1,0,0),则cosm,n,平面PDE与平面PBC所成锐二面角的余弦值为.3(2019高考全国卷)如图
5、,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值解析:(1)证明:如图,连接B1C,ME.因为M,E分别为BB1,BC的中点,所以MEB1C,且MEB1C.又因为N为A1D的中点,所以NDA1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MNED.又MN平面C1DE,所以MN平面C1DE.(2)由已知可得DEDA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz,则A(2,0,0),A1
6、(2,0,4),M(1,2),N(1,0,2),(0,0,4),(1,2),(1,0,2),(0,0)设m(x,y,z)为平面A1MA的法向量,则所以可取m(,1,0)设n(p,q,r)为平面A1MN的法向量,则所以可取n(2,0,1)于是cosm,n,所以二面角AMA1N的正弦值为.4(2019高考全国卷)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值解析:(1)证明:由已知得,B1C1平面ABB1A1,BE平面ABB1A1,故B1C1BE.又BEEC1,B1C1EC1C1,所以BE平面EB1C1.(2)由(1)知BEB190.由题设知RtABERtA1B1E,所以AEB45,故AEAB,AA12AB.以D为坐标原点,的方向为x轴正方向,|为单位长度,建立如图所示的空间直角坐标系Dxyz,则C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),(1,0,0),(1,1,1),(0,0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 备办室外宴席服务行业市场调研分析报告
- 保健咨询行业相关项目经营管理报告
- 兽医用油脂产品供应链分析
- 冰箱压缩机产业链招商引资的调研报告
- 台球设备产品供应链分析
- 立体声耳机细分市场深度研究报告
- 粉屑清扫器商业机会挖掘与战略布局策略研究报告
- 装有洗衣剂的洗衣球商业机会挖掘与战略布局策略研究报告
- 蛋糕模项目营销计划书
- 电动梳子市场分析及投资价值研究报告
- 苏州工业职业技术学院辅导员考试真题2022
- 肺结节科普宣教培训
- 小学老师小学老师说课技能 说课的基本环节
- 流感诊疗指南
- COVID-19-疫情-新冠病毒-英语作业ppt(关于抗击疫情的英雄们)
- 混凝土楼板上行走吊机时楼板承载能力计算方法
- 入监教育内容公开课
- 高等工程数学知到章节答案智慧树2023年南京理工大学
- 2023届北京市海淀区高三下学期二模语文讲评
- 医疗机构抗菌药物临床应用备案表
- 英雄武汉知到章节答案智慧树2023年华中科技大学
评论
0/150
提交评论