基于无线传感器网络的抽油机远程参数检测系统毕业论文外文翻译_第1页
基于无线传感器网络的抽油机远程参数检测系统毕业论文外文翻译_第2页
基于无线传感器网络的抽油机远程参数检测系统毕业论文外文翻译_第3页
基于无线传感器网络的抽油机远程参数检测系统毕业论文外文翻译_第4页
基于无线传感器网络的抽油机远程参数检测系统毕业论文外文翻译_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、附录aremote monitoring system of pumping unit based on wireless sensor networksmeijuangao, jin xu, and jingwen tiandepartment of automatic control, beijing union university school of information science, beijing university of chemical technology beijing, chinai. introductionas wireless communication t

2、echnology continues to improve, it is an important development direction to implement the remote monitoring system of pumping unit using wireless networks. now in this field the application is mainly gprs wireless network, but the network base station is costly, with coverage blind spot, and oil exp

3、loitation is usually in the areas where the communication signals cant cover, the paper introduces a remote monitoring system of pumping unit based on zigbee 1-2. zigbee is a new wireless networking technology, it is a technical proposal between bluetooth technology and the wireless marker, with low

4、 power, low cost and short time-delay characteristics. zigbee is the set of specs built around the ieee 802.15.4 wireless protocol, using zigbee, devices in a network can communicate at speeds of up to 250 kbps while physically separated by distances of up to 50 meters in typical circumstances and g

5、reater distances in an ideal environment. based on zigbee network communication technology and microprocessor technology, the system can deal with the various operating parameters of the remote transmission, real-time data collection and real-time load monitoring. the significance is: by monitoring

6、the functioning of the pumping unit, when failure or abnormal operation take place, it can give an alarm quickly, reduce downtime and ensure oil pumps operate safely, provide a reliable guarantee for oilfield. ii. system designthe main design thinking of the system is: monitoring the three-phase pow

7、er, temperature, rotational speed and flow of pumping unit by sensors. when abnormal operation take place, it can cut off the power of the oil pump and give an alarm, at the same time the monitored data can be transmitted through the zigbee network. the worker can understand the oil pump work state

8、at control centre, and implement the monitoring of pumping unit informatization and automation, the purpose is to protect normal pumping units, reduce downtime, improve efficiency and achieve economic efficiency. a. network design of system the system is made up of data collection monitoring module,

9、 wireless module and control centres. its structure is shown in fig.1.in the blind area of the mobile communication system, as the distribution of oil wells are non-uniform, we can set up a relay node in several neighboring collection points. the data collected by each nodes can be sent to relay nod

10、es firstly, then each relay node send the data to the network coordination, at the same time, when the works abnormally of oil pump is detected by collection node, the power of oil pump can be cut off timely. the information is transmitted to the control centre pc by network coordinator, workers can

11、 know the working condition of oil pump in time through pc. when we need long-distance transmission in the area where the communication signals cant cover, there will be a number of zigbee wireless nodes to transfer data in relay ways, and then connect to communication network when there are communi

12、cation signals. this will not only solve the problem of blind spots in mobile communications networks, but also achieve a long-distance transmission, and save cost.bmesh networksmesh networks are regularly distributed networks that generally allow transmission only to a nodes nearest neighbors. the

13、nodes in these networks are generally identical, so that mesh nets are also referred to as peer-to-peer (see below) nets. mesh nets can be good models for large-scale networks of wireless sensors that are distributed over a geographic region, e.g. personnel or vehicle security surveillance systems.

14、note that the regular structure reflects the communications topology; the actual geographic distribution of the nodes need not be a regular mesh. since there are generally multiple routing paths between nodes, these nets are robust to failure of individual nodes or links. an advantage of mesh nets i

15、s that, although all nodes may be identical and have the same computing and transmission capabilities, certain nodes can be designated as group leaders that take on additional functions. if a group leader is disabled, another node can then take over these duties. all nodes of the star topology are c

16、onnected to a single hub node. the hub requires greater message handling, routing, and decision-making capabilities than the other nodes. if a communication link is cut, it only affects one node. however, if the hub is incapacitated the network is destroyed. in the ring topology all nodes perform th

17、e same function and there is no leader node. messages generally travel around the ring in a single direction. however, if the ring is cut, all communication is lost. the self-healing ring network (shr) shown has two rings and is more fault to lerant. in the bus topology, messages are broadcast on th

18、e bus to all nodes. each node checks the destination address in the message header, and processes the messages addressed to it. the bus topology is passive in that each node simply listens for messages and is not responsible for retransmitting any messages.c. design of data collection monitoring mod

19、ule data collection monitoring module is made up of wireless scm, three-phase power parameter detection circuit, photoelectric encoder, temperature sensor, flow sensor and relay. it detects the parameters of pumping unit timed or when it receives the order from control centre, then send the test res

20、ult to the control centre. at the same time, the scm monitors the result, cuts off the pumping units power automatically through controlling the relay in pumping unit power circuit when it finds the result overrun danger alarming threshold. data collection monitoring module circuit is shown in fig.2

21、. wireless scm is zigbee chip cc2430 3. the chip can content the need of high performance and low power in 2.4 ghz ieee 802.15.4 band based zigbee, rohs compliant 7x7mm qlp48 package, it includes 2.4ghz rf transceiver and an industry-standard enhanced 8051 mcu, 32/64/128 kb flash memory, 8 kb ram an

22、d many other powerful features, adc, several timers, 21 general i/o pins and so on.in order to get pumping units three-phase power parameter, include each phase valid value of voltage and current, active power and reactive power, power factor and frequency. we choice the new single phase bi-directio

23、nal power/energy measurement chip cs5460a with serial interface, it includes a power calculation engine and a bidirectional serial interface. using m/t method, the rotational speed can be detected by photoelectric encoder in the system. by intercalating bit and byte of a group of sfr registers in cc

24、2430, make p1.5 and p1.6 as counter and timers pin, photoelectric encoders pulse signal add to p1.6s input end, then calculate rotational speed. we use lugb catena vortex transducer to measure flow, the transducers output is 4-20ma current analogue signal, the signal can be connected to scms a/d pin

25、. we use the ad590 temperature sensor to measure temperature, the sensors measuring temperature confine is -55+150, voltage is +4.0v+30v. the relay is solid relay ssr10a300a. d. control centre the control centre includes network coordination and pc. the network coordination primarily takes charge to

26、 distribute network address to new rode, and notarize the physical address, transmit test data. the network coordination can connect with pc by rs232, and send the information to pc. the information includes pumping unit node number, parameter type and test result. the pc computer monitors the whole

27、 network working state, gives an alarm when it finds the result overrun danger alarming threshold, the alarm includes pumping unit number and failure reason, such as “the pumping unit 1 is overcurrent fault”. e. wireless transmit module the system uses the zigbee to transmit information 4. there are

28、 all function fixture cc2430 in monitoring terminal, and cc2420 in middle circuitry. the networks csma/ca protocol is similar to ethernets csma/cd. when one of the sites will to send a message, it first monitor the channel leisure time, if the time is longer than a frame interval, it send the messag

29、e, otherwise not. csma/ca communication mode makes the partition of time domain connect with frame format, ensure only one site is transmit message sometime. iii. software designa. the frame structure of system network protocol ieee 802.15.4 ordains the frame structure of zigbee protocol is made up

30、of data model, destination address, data length, data information and checkout,the format is shown in fig.3. “destination address” is the location where the frame will be sent, namely network node number. the “data massage” presents the order or effectual data that will be sent, its byte is decided

31、by data length. the “data massage” is designed in this system, the “data massage” is divided into “node message”, “function coding” and “data” three parts. it is shown in fig.4.“node message” length is a byte, lower four bits are data collection node numbers, higher four bits are network coordinatio

32、n numbers. “function coding” is divided into two parts: direction bit and function type. the system function includes upstream and downstream, it is decided by direction bit. function type can distinguish the date type. the format is shown in fig.5.b. software flow the software flow mainly includes

33、network coordination and data collection point. they are shown in fig.6 and fig.7. as to network coordination, the cc2430 is initialized firstly, then the protocol stack is initialized and the interrupt is opened. after that program begins formatted the network, if the network is formatted successfu

34、lly, and network coordination connect to computer by serial port, we can find the physical address of network coordination, network id and channel number by software. then network coordination is in monitoring state, if a node will add to the network, it will distribute a network number. if data col

35、lection node sends some data, it will judge that where the data come from, it is which parameter, and send the message to control centre.as to data collection node, the program also initialize cc2430 firstly, then open the power of sensor and initialize protocol stack, begins send signal to add to n

36、etwork, wait for network coordinations answer, distribute network address. after it adds to network successfully, if it is connected to computer by serial port, we also can find its physical address, network id and physical address of network coordination. after the data collection node is added to

37、network, it is in monitoring state, monitoring whether there are detection orders come from network coordination, if it is, perform the task. if the results overrun danger alarming threshold, low level from cc2430 will change to high level, relay permanent open contacts are off, and cut off the powe

38、r of pumping unit in time. iv. conclusionusing zigbee wireless network technology to achieve oilfield remote monitoring, the management informatization and automation of pumping unit are implemented. it can greatly improve efficiency and reduce network formation and operation costs. this program can

39、 solve the problem that data collection code is in the blind spots, and in the place where gprs network can cover, if the transmission distance is longer, network coordination can connect to gprs, so we neednt build communication bases extra, it can make routine maintenance convenient, and cost savi

40、ngs. 附录b基于无线传感器网络的抽油机远程参数检测系统高美娟,徐锦,田景文北京联合大学自动控制专业中国北京化工大学信息科学学院1绪论随着无线通信技术的不断完善,研究基于无线传感器网络的磕头机的远程监控系统是一个重要的发展方向。现在在这一领域主要应用的是gprs无线网络,但建立网络基站是昂贵的,并且石油开采所在的地区通常是的通信信号不能覆盖的盲点,本文介绍了一种基于zigbee的抽油机远程参数监测系统1- 2。zigbee是一种新兴的无线传感器网络技术,具有低功耗,低成本,和时间延迟短的优点。zigbee是一套建立在ieee 802.15.4规范的无线协议,使用zigbee设备可以在网络通信

41、的速度高达250 kbps的同时传输50米的距离,在理想的环境中可以传的更远。基于zigbee网络通信技术和微处理技术,本系统能够处理各种类型的运行参数的远程传输,实时数据采集和实时负荷监测。研究该系统的意义是:通过监测抽油机的运行状态,当出现故障或异常操作时,它可以迅速发出警报,减少停机时间,并确保抽油机安全运行,为油田提供了安全保证。2系统设计本系统主要的设计思想是:通过无线传感器监测抽油机的电源,温度,转速和流量。当发生非正常运作时,它可以切断抽油机的电源并发出警报,同时监测的数据可以通过zigbee网络传送。控制中心的工作者可以知道抽油机的工作状态,实现了抽油机监测系统的信息化和自动化

42、,其目的是为了保证抽油机的正常工作,减少停机时间,提高效率,提高经济效率。a系统的组网该系统由数据采集监控模块,无线收发模块和控制模块组成。系统的网络组成如图1所示。在移动通信系统的盲区,油井的分配是不统一的,我们可以在几个相邻的采集节点设立一个中继节点。每个采集节点所收集的数据可以先发送到中继节点,然后每个中继节点发送数据到网络协调器,在同一时间,当抽油机异常工作时,其电力系统可以及时的切断。这些信息传将通过网络协调器传递给控制中心pc机,工作者可以随时通过pc机知道磕头机的工作状态。当我们需要在通信信号不能覆盖的领域长距离传输时,使用一些zigbee无线节点以多跳方式把数据传输到有通信信号

43、的地方。这不仅将解决在移动通信网络中的盲点问题,而且还实现路数据的长距离传输,并节省了成本。b mesh网络mesh网络是一种通常只允许临近节点传送数据的有规律的分布网络。在这网络中的节点通常是对等的,所以mesh也被认为是对等网络。mesh网络是一个很好的大规模的分布在一个地理区域的无线传感器网络。例如:人员或车辆的安全监控系统。请注意,这种有规律的结构反映了通信的拓扑结构;实际节点的地理分布不需要是一个规则的网络。尽管通常在节点间有多条路由,这个网络很可能因为单个节点或循环而失败。这种mesh网络的优点是,尽管网络中的所有节点都是对等的,并且具有相同的计算和传输能力,但被设计为“领导者”的

44、中心节点需要承担其他的功能。如果一个“领导者”丧失作用,其他的节点可以承担这个职责。星型拓扑结构的所有节点连接到一个中心节点。该中心节点比其他节点有更强的信息处理,路由和决策能力。如果一个通讯联系被切断,只会影响一个节点。但是,如果网络的中心节点是丧失功能的话,整个网络系统被毁坏了。在环形拓扑结构中,所有的节点执行相同的功能,也没有中心节点。信息通常按照一个方向循环。邮件一般游览环在一个单一的方向。但是,如果循环被切断,所有的通信都将丢失。自我修复系统具有两个循环和更多的纠错能力。待添加的隐藏文字内容2在总线拓扑结构中,信息通过总线传播给所有节点。每个节点会检查邮件标题中的目标地址,并把信息传

45、送给它。总线拓扑结构是被动的,每个节点只接收信息,但不负责转发任何信息。c数据采集检测模块的设计数据采集监测模块由控制器,三相电路参数检测电路,光电编码器,温度传感器,流量传感器和继电器。它及时的检测磕头机的参数,当它收到控制中心的命令时,将测试结果传送给控制中心。与此同时,当控制器发现测试结果超出报警值时,它自动切断磕头机的电源电路。数据采集节点电路图如图2所示。无线收发模块使用的是cc24303。该芯片可以满足基于zigbee的频段是2.4ghz的ieee802.15.4的高性能和低功耗的要求。,它包含一个2.4ghz的 rf收发器和一个工业标准的增强型8051微控制器,32/64/128kb的闪存,8 kb的ram以及其它功能引脚,模拟数字转换器,几个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论