版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、谷胱甘肽过氧化物酶在致癌作用的不同阶段 谷胱甘肽过氧化物酶在致癌作用的不同阶段 关键词:谷胱甘肽过氧化物酶 癌症发展 环加氧酶 氢过氧化物 转移 细胞凋亡 摘要:癌症细胞产生高量的活性氧(ros)和逃避凋亡减少。过氧化物支持增殖,侵袭, 迁移和血管生成,但在较高的水平,诱导细胞凋亡,从而致癌和抗癌。因此,谷胱甘肽过氧化物酶(gpxs)调节氢过氧化物水平可能有双重角色。 gpx1,显然是抗氧化酶,是在许多癌症细胞中下调减少。其主要作用是由ros介导的dna损伤引发癌症的预防减少。 gpx2在癌细胞中上调。gpx1 / gpx2双基因敲除小鼠小肠结肠炎和癌症发展。然而,gpx2击倒的癌细胞在体外和
2、体内生长得更好,可能反映了gpx2在肠粘膜动态平衡的生理作用。gpx2在癌细胞中上调抵消cox-2表达和pge2生产,这也解释了其可能抑制培养的肿瘤细胞迁移和侵袭减少。 gpx3的过度表达抑制了肿瘤生长和转移。 gpx4在癌组织中减少。 gpx4过度表达的癌细胞有较低的cox-2活性及由此衍生的肿瘤比对照组小,不发生转移。总的来说,gpxs通过消除氢过氧化物防止癌症的发生。 gpx4抑制但是gpx2支持已建立的肿瘤的生长。不但转移,而且细胞凋亡都被所有gpxs抑制。 gpx-介导的环氧合酶/液氧活动的监管,可能与炎症介导的癌变的早期阶段有关。 1. 介绍 硒的低摄入量已被证明与癌症高发病率有关
3、。因此,化学预防功能已普遍被归结为硒。硒补充预防癌症在一个大型临床对照试验中最终被证明。一个追踪观察的相同试验显示,只有那些加入低硒状态研究的参与者,总癌症发病率减少,然而那些有更好硒状态的参与者癌症发病率却显著提高。第二次后续分析报告,有非黑色素瘤皮肤癌病史的实验者,在鳞状细胞癌和总的非黑色素瘤皮肤癌的风险中硒依赖性增加。第二次大型临床实验 硒和维生素e癌症预防试验(选择),没有发现硒的补充对前列腺癌或其他癌症有任何益处。硒甚至可能产生不利影响。这表明,硒的益处可能取决于硒的基础状态,癌症的类型,以及某些硒上调开始的癌症阶段。 相反在大量动物实验研究中,supranutritional剂量下
4、不同形式的硒提供保护。潜在机制还不是很清楚。目前仍不清楚,究竟个别含硒蛋白质还是全部含硒蛋白质有助于预防癌症,依靠硒还是特别的独立于含硒蛋白质生物合成的硒化合物作用。讨论机制,如基因表达的改变和dna的损伤与修复可能取决于硒的化学形态和介入的时间点上。其他讨论的机制,如缓冲炎症反应,诱导细胞凋亡,细胞周期调控,或抑制肿瘤细胞侵袭力,至少部分可能受含硒蛋白质影响。 人类基因组包含25个含硒蛋白质的基因,小鼠基因组有24个。产生的含硒蛋白质数目可能更高,因为剪接变异体是不定的和他们的数量会随着时间的推移增加。其中大部分蛋白质的功能仍是未知。甚至到目前为止,8个已知谷胱甘肽过氧化物酶的个别作用(其中
5、5个是人类的含硒蛋白质)尚不完全清楚。他们都可能是能够减少氢过氧化物: rooh + 2gshroh + h2o + gssg 因此,它们的功能,应与氢过氧化物的去除和/或新陈代谢有关。gpxs在致癌的作用中 似乎很直接,因为许多癌症的发展进程取决于或受氢过氧化物的影响。这个回顾因此将集中于致癌作用和氢过氧化物的关联以及个别谷胱甘肽过氧化物酶的作用。 2. 在肿瘤细胞中的氧化还原状态 肿瘤细胞与正常细胞相比,两个特点是活性氧(ros)的生成增加和消除活性氧的能力下 降。此外,大量肿瘤细胞获得耐药性,依靠上调二期和三期的酶/蛋白,消除抗癌药物。上调机制最有可能通过活化的nrf2/keap1系统发
6、生,除了大量被氢过氧化物激活巯基修饰化合物。对肿瘤细胞持久的氧化应激的支持在来自提高的氧化dn a损伤,例如各种肿瘤中的8 -羟基-2-脱氧鸟苷(8-oh-dg)。癌细胞使用ros的刺激增殖,侵袭,迁移和血管生成,但最重要的发展机制是逃避细胞凋亡28。癌细胞中几种的ros已经讨论:(1)线粒体加强释放o2?和/或 h2o2;(2)活化的nadph氧化酶(nox)系统生产出o2?和随后的h2o2;(3)抑制抗氧化酶,如锰超氧化物歧化酶(mnsod),gpx1以及在某些情况下的过氧化氢酶,然而铜锌超氧化物歧化酶(cuznsod)已被报道增加或者减少;(4)肿瘤周围的ros暴露和炎性细胞释放促炎细胞
7、因子;或者(5)上述的综合。 ros带动的增长刺激是通过活化的蛋白激酶,磷酸酶,核转录因子的改变来获得的(见下文)。途径和系统以这种方式调节,即低浓度或者中等浓度的ros激活它们,而高浓度的则抑制它们。为了应付这两种情况下,肿瘤细胞显然已经取得的能力,调整氧化应激达到一个水平,足以维持其生存,但不启动依靠细胞凋亡的自我消除。这种肿瘤细胞的生长优势是依靠抗氧化剂企图阻止致癌作用的基本原理。干扰肿瘤细胞的氧化还原平衡,无论如何,不能在所有情况下产生有益的结果(见上文)。然而去除ros,可以抑制dna损伤和癌细胞增殖,同时可以抑制ros介导的细胞凋亡。因此,氢过氧化物在癌变中显示有双重作用,而对于g
8、pxs可能是同样的。我们因此总结,开始进行调节gpx活性,依靠改变硒状态,或者依靠遗传干预弄清楚他们在肿瘤的发生,增殖和转移中的假定作用。 3. 氢过氧化物的生产 3.1 线粒体 呼吸复合体和酶是线粒体的o2?。复合体似乎是在基本和病理状态下大脑中最基 本的,然而复合体则负责来自心和肺的线粒体生产的o2?。超氧化物的形成发生在线粒体外膜,基质和线粒体内膜两侧,占总耗氧量的12% 。然而在基质中产生的o2?依靠在间隔中呈现的锰超氧化物歧化酶(mnsod),催化形成h2o2,在内膜空间中产生的o2?可以通过电压依赖性阴离子通道输出,或者被铜锌超氧化物歧化酶(cuznsod)催化,其中cuznsod
9、可以被h2o2介导的关键巯基修饰来短暂激活。线粒体的主要任务是能源产生。线粒体能量代谢降低被假设是癌症发展的原因,已经由warburg在1926年作出假设。他观察到癌细胞产生的大多数atp是通过糖酵解,而不是通过呼吸链。后来的研究质疑了这个想法,并表明,肿瘤细胞线粒体能够产生atp。而糖酵解确实是由缺氧引起上调,这个现象普遍存在于肿瘤细胞中。上调由激活的缺氧诱导因子(hif)介导,hif被ros激活和/或诱导。 线粒体衍生的ros在癌症相关过程中的影响,已经被众多癌症中线粒体基因的突变所证明,但是突变不存在在相同个体的周围组织中。在锰超氧化物歧化酶(mnsod)过度表达的细胞中,促分裂原活化蛋
10、白激酶(mapk) 途径被激活,而随后的间质金属蛋白酶-1(mmp-1)被诱导。线粒体衍生的ros 的主要功能是调控细胞的死亡途径,然而那些来自nadph氧化酶的ros更有可能参与信号传输流程。 3.2 nadph氧化酶系统 nadph氧化酶(noxs)不局限于吞噬白细胞,同时也在各种细胞和组织类型中表达,产 生h2o2作为信号分子。事实上,各种生长因子和细胞因子包括生长因子(pdgf),表皮生长因子(egf),胰岛素,肿瘤坏死因子信号(tnf-)信号通过氮氧化物衍生的(nox-derived)h2o2。第一个检测到的氮氧化物(nox),现在被称为氮氧化物-2(nox-2),由膜结合细胞色素b
11、558组成,包含催化黄素结合的和血红素结合的糖蛋白gp91phox和p22phox的较小 亚基。细胞质组成部分,p67phox,p47phox的,p40phox和小gtpase rac 被募集到刺激所在的膜上来组成活跃的复合体。截至到现在,具有不同组织定位和亚细胞亚隔的4个或者4个以上氮氧化物(nox-1, nox-3 to 5)和两个双氧化酶 (duox 1 和2)被描述。氮氧化物4(nox-4)作为亚型最经常表达在肿瘤细胞上。由此可见在癌变过程中,氮氧化物的表达失调。氮氧化物的参与促进了细胞生存,战胜细胞凋亡,这一现象已在各种细胞和肿瘤中被证明。氮氧化物-1衍生的ros 是血管生成开关和血
12、管生成的分子标记增加的有效触发器,如血管内皮生长因子(vegf),血管内皮生长因子受体和基质金属蛋白酶。抑制胰腺癌细胞中的氮氧化物4,导致细胞凋亡以及抑制残存信号和肿瘤细胞生长,然而氮氧化物5 显示作用于磷酸酪氨酸磷酸酶(ptp)依赖性的成熟b细胞成为恶性毛细胞。此外具有转移潜能的纤维肉瘤细胞注入gp91phox - / - 小鼠时数量减少。 4. 氢过氧化物清除系统 4.1谷胱甘肽过氧化物酶 到目前为止,5个含有硒的谷胱甘肽过氧化物酶(gpx)已在人类中确定,即gpx1-4和 gpx6。他们都可以和h2o2及可溶性脂肪酸的氢过氧化物反应。gpx4是唯一一个也可以与复杂的脂质氢过氧化物反应的g
13、px。h2o2氧化了位于gpxs活性中心的二硫化硒组(?seh)的硒代半胱氨酸(secys),变成the selenenic acid (?seoh),随后逐步减少了两分子的谷胱甘肽。这个反应需要去质子化的secys (?se?),很容易发生在生理ph值时,因为pk-seh(pk=约5.2)比半胱氨酸pk(pk=约8.2)低。gpx和h2o2的反应速度非常快(ka=5107 m?1 s?1),保证快速去除h2o2,尤其是当浓度变高时 4.2 过氧化物氧化还原酶 一个同样能减少氢过氧化物的新型酶家族是过氧化物氧化还原酶(prx)家族。到目前为止六名成员,过氧化物氧化还原酶i-vi,是已知的。pr
14、x i-iv归类为典型的2-半胱氨酸过氧化物氧化还原酶(2-cys prxs),prx v是非典型的2-半胱氨酸过氧化物氧化还原酶(2-cys prxs),而prx vi是1-半胱氨酸过氧化物氧化还原酶(1-cys prxs)。典型2-cys prxs中的过氧化半胱氨酸(peroxidatic cysteine)被h2o2氧化为半胱氨酸sulfenic酸。sulfenic酸和“解决半胱氨酸(resolving cysteine)”形成二硫化物,位于低聚2-cys prxs的相邻过氧化物氧化还原酶亚基上,或者位于非典型2-cys prxs的同一分子中。此二硫化物接着减少了硫氧还蛋白或者谷氧还蛋白
15、。在 1-cys prx vi情况下,没有一个解决半胱氨酸(resolving cysteine),氧化酶直接减少了谷胱甘肽。h2o2和过氧化物氧化还原酶的反应由一个附近带正电荷的精氨酸支持,这有利于过氧化半胱氨酸的分解。过氧化物氧化还原酶与氢过氧化物的反应常数比谷胱甘肽过氧化物酶的低一到三个数量级。因此,在清除h2o2 方面过氧化物氧化还原酶(prxs)没有谷胱甘肽过氧化物酶(gpxs)有效,但是通常出现在高浓度时。 一个过氧化的过氧化物氧化还原酶(prxs)被高过氧化水平转化为亚磺酸(?so2h),最初被认为是不可逆转的。亚磺酸还原酶和硫氧化蛋白(srx)的探索发现,在哺乳动物中这个反应是
16、可逆的,而且导致亚磺酸的监管模式转换。sestrins不显示和硫氧化蛋白家族的序列同源性,在体外至少能够减少prxs。有趣的是,sestrins是p53的靶点(见下文)。两个家庭的存在减少prxs,突出了保持prxs工作的重要性。另外,它有可能,srx和sestrins恢复不同酶家庭的活动。到目前为止, srx已经显示是典型的2-cys prxs,而至今找不到sestrins直接减少任何prx的证据,sestrin 2肯定不会减少2-cys-prx亚磺酸。 4.3 过氧化氢酶 过氧化氢酶是存在于所有需要氧气的有机体。它可以减少过氧化氢水和氧气,是周转率最高的酶之一,几乎专一地在过氧化物酶体中表
17、达。过氧化氢酶的水平,在某些肿瘤细胞增加,但在其他某些肿瘤细胞中减少,从而可能有助于这些肿瘤细胞抗氧化能力下降。这种减少也可通过选择性地过氧化氢酶自体吞噬减少造成,导致ros积累和最终非凋亡的细胞死亡。 因此,至少有三个系统的存在,不仅可以防止氧化损伤,同时调节过氧化物依赖的信号事件,深刻地展示了大自然考虑这个平衡的氢过氧化物体内稳态是多么的认真。 5氢过氧化物的功能 氢过氧化物是非自由基的反应性氧。他们是身体内有目的地产生,用于合成,解毒过程 以及免疫防御。在甲状腺中,h2o2 是甲状腺过氧化物酶的底物,催化甲状腺球蛋白和碘的结合,是合成甲状腺激素的关键步骤。在过氧化物酶体中,h2o2 在长
18、链脂肪酸降解过程中产生。在微粒体中,h2o2在细胞色素p450 系统的解毒反应中产生。吞噬白细胞利用氮氧化物衍生的h2o2作为抗杀菌分子。在这里,h2o2由o2-衍生而来,o2-由活化的nadph氧化酶复合体释放。 近年来,h2o2细胞信号传导的基本功能越来越清楚。生长因子,例如血小板源性生长因子,成纤维细胞生长因子,表皮生长因子,信号通过受体酪氨酸激酶,激活促分裂原活化蛋白激酶(mapk)磷酸化级联,也就是细胞外信号调节激酶的级联,c-jun氨基末端激酶/应激活化蛋白激酶(jnk/sapk)和p53 以及磷脂酰肌醇-3-激酶(pi3k/akt)通路(见下文)。生长因子信号传导包括,氮氧化物的
19、激活,h2o2的产生以及最后细胞增殖的刺激。磷酸化事件被蛋白酪氨酸磷酸酶控制,被h2o2灭活。在蛋白酪氨酸磷酸酶下,h2o2和关键半胱氨酸反应,形成sulfenic acids,导致他们的灭活。蛋白酪氨酸磷酸酶从而调节,比如脂质磷酸酶 人第10号染色体缺失的磷酸酶及张力蛋白同源的基因(pten),蛋白质磷酸酶2a,2b和2c,或者低分子量蛋白酪氨酸磷酸酶。蛋白酪氨酸磷酸酶作为终结因子,他们的灭活可以允许持久的生长信号。氧化还原调节的转录因子包括 核转录因子b(nfb), 酸性磷酸酶1(ap-1), 负调节因子2(nrf2) 和 下丘脑抑制因子1系统(hif1 systems)。 氢过氧化物可以
20、产生正效应(信号传导)和负效应(损伤),依赖于过氧化物的集中和参与应答的细胞类型。氢过氧化物还存在抗氧化酶类,高表达或者高活性可能干扰h2o2介导的信号传导通路,但是同时防止氧化损伤。在任何情况下,h2o2的产生和消除依赖于个体的情况而被调节,是谷胱甘肽过氧化物酶(gpxs)和过氧化物氧化还原酶(prxs)的一个任务。 6. 氢过氧化物的致癌作用 6.1 癌症发生中的氢过氧化物 最充足的内源性活性氧(ros )是h2o2,也是直接产生或者o2?歧化作用导致。在转换金属离子的存在下,尤其是铁离子和铜离子,h2o2可以经历芬顿反应(fe2+h2o2fe3+oh?+uoh),在过氧化物存在下可以发生
21、哈贝尔-韦斯反应(o2u?+h2o2o2+uoh+oh?),因此,导致行程最具攻击性的羟基。依此类推,脂氧合酶的初级产物可以被认为是uoh潜在。作为羟自由基的前体,h2o2和其他氢过氧化物在dna和核苷酸库中,在c8 位置与鸟甘酸反应,从而构成8-oh-dg。8-oh-dg产生鸟嘌呤核苷到胸腺嘧啶核苷的颠换,导致或多或少的专一位点的诱变,广泛发生于突变的癌基因和肿瘤抑癌基因中。8-oh-dg可以进一步导致低甲基化,而因此活化肿瘤促进基因。而且,脂质过氧化反应产物,例如4-羟基丙烯醛,可以构成dna加成化合物,它在致癌作用中起关键作用。因此,产物增加或者消除缺少导致的过氧化物张力效应增强子的失调
22、,可以确定通过诱变导致致癌作用的发生。h2o2的前致癌物效应也可由细 胞损伤的炎症反应导致。在这个理论中,谷胱甘肽过氧化物酶(gpxs)被认为是抗癌作用。 6.2 癌症促进/进展中的氢过氧化物 癌症促进阶段(肿瘤前)是以起始细胞克隆性扩张为特征的(如图一)。促进需要细胞增 殖,可以在正常细胞中和生长因子信号级联持续刺激而维持的肿瘤细胞中,由低水平的活性氧(ros)产生。 细胞凋亡抑制也支持促进。适度水平的氢过氧化物长期被认为促进细胞凋亡。然而在恶性细胞中活性氧(ros)拥有相反的效应。活性氧(ros)如何发生促进或者抑制细胞凋亡的选择性,目前不清楚,但是可能依赖于他们的浓缩,功能性的p53(在大量癌症类型中突变)和核转录因子b(nfb)的作用(见上文)。 6.3 转移中的氢过氧化物 活性氧(ros)影响转移的机制已经被广泛地评论。肿瘤转移包括一系列连续的步骤:由 于细胞粘附的消失和分离的存在,从初级肿瘤中分离,内渗进入循环系统和上皮,向间质过度(上皮细胞-间充质转化 emt),停止在下游器官,粘附于内皮细胞,渗出物进入靶组织,转移的肿瘤增殖和血管形成。所有这些步骤是否受氢过氧化物影响仍不可知。无论如何,大量的进程或者途径确实受氧化还原调节的。 活性氧(ros)介导的上皮细胞钙粘蛋白抑制,主要的细胞间的粘附分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 意识形态知识培训课件
- 二零二五年度商业秘密保护协议5篇
- 二零二五年度城市综合体开发商离婚协议与综合体运营与维护合同3篇
- 二零二五年度建筑工程施工合同培训教程汇编3篇
- 二零二五年度城市绿化工程承包劳务合同2篇
- 电动机基础知识培训课件
- 水稻除草剂知识培训课件
- 面包师公共知识培训课件
- Unit3 It's a pineapple.Lesson13(说课稿)-2024-2025学年人教精通版英语四年级上册
- 福建省龙岩市新罗区2024-2025学年四年级上学期期末数学试题参考答案
- 2024年度吉林省国家电网招聘之法学类典型题汇编及答案
- 山东省临沂市2023-2024学年高一上学期1月期末考试 物理 含答案
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-下(多选、判断题)
- 2023年福建公务员录用考试《行测》真题卷及答案解析
- 中华人民共和国学前教育法
- 辩论英文课件教学课件
- 铣工高级工测试题(含答案)
- 送货员岗位劳动合同模板
- 2024年自然资源部所属事业单位招聘(208人)历年高频难、易错点500题模拟试题附带答案详解
- 《建筑施工安全检查标准》JGJ59-2019
- 广东茂名市选聘市属国有企业招聘笔试题库2024
评论
0/150
提交评论