实验五异方差模型的检验_第1页
实验五异方差模型的检验_第2页
实验五异方差模型的检验_第3页
实验五异方差模型的检验_第4页
实验五异方差模型的检验_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验报告课程名称:计量经济学实验项目:实验五异方差模型的检验和处理实验类型:综合性口设计性口 验证性专业班别: 123姓 名:学 号:412实验课室:厚德楼 A404指导教师:实验日期:2015年5月28日广东商学院华商学院教务处 制、实验项目训练方案小组合作:是否小组成员:无实验目的:掌握异方差模型的检验和处理方法实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。实验训练内容(包括实验原理和操作步骤):【实验原理】异方差的检验:图形检验法、Goldfeld-Quanadt检验法、White检验法、Glejser检 验法;异方差的处理:模型变换法、加权最小二乘

2、法 (WLS)。【实验步骤】本实验考虑三个模型:【1】广东省财政支出CZ对财政收入CS勺回归模型;(数据见附表1:附表1-广东 省数据)【2】广东省固定资产折旧ZJ对国内生产总值GDP和时间T的二元回归模型;(数 据见附表1:附表1-广东省数据)【3】广东省各市城镇居民消费支出Y对人均收入X的回归模型。(数据见附表2: 附表2-广东省2005年数据)(一)异方差的检验1. 图形检验法分别用相关分析图和残差散点图检验模型【1】、模型【2】和模型【3】是否存 在异方差。注:相关分析图是作应变量对自变量的散点图(亦可作模型残差对自变量的散点图); 残差散点图是作残差的平方对自变量的散点图。 模型【2

3、】中作图取自变量为 GDPS来作图。模型【1】相关分析图残差散点图模型【2】相关分析图残差散点图模型【3】相关分析图残差散点图【思考】 相关分析图和残差散点图的不同点是什么?*在模型【2】中,自变量有两个,有无其他处理方法?尝试做岀来。(请对得到的图表进行处理,以上在一页内 )2. Goldfeld-Qua nadt检验法用Goldfeld-Quanadt检验法检验模型【31是否存在异方差。注:Goldfeld-Quanadt检验法的步骤为:排序:删除观察值中间的约1/4的,并将剩下的数据分为两个部分。构造F统计量:分别对上述两个部分的观察值求回归模型,由此得到的两个部分的残差平方为 2e2i

4、2 2计量L Je2iF(冒k.(n -c) _k)。判断:给定显着性水平:二0.05,查F分布表得临2C )。如果F Fk)界值 F(n_c)k (n _c)2 , 2(详见课本135页)将实验中重要的结果摘录下来,(nr) (nq C ),则认为模型中的随机误差存在异方差。( k, k)2 2附在本页。、 $为较大的残差平方和, a e2i为较小的残差平方和。算统obsXY17021.9427220.446317.0337299.256463.3746350.3858842.846757.0269214.67294.9379867.367669.84810097.27476.6591090

5、8.368113.641011944.088296.43111229.179505.661215762.7712651.951317680.114485.611418287.2414468.241518907.7314323.661621015.0318550.561722881.821767.781828665.2521188.84Dependent Variable: YMethod: Least SquaresDate: 06/07/15 Time: 11:18Sample: 1 7Included observations: 7VariableCoefficientStd. Error

6、t-StatisticProb.?X0.7230770.2183863.3110030.0212C536.88741814.2540.2959270.7792R-squared0.686771?Mean dependent var6497.894Adjusted R-squared0.624125?S.D. dependent var966.9988S.E. of regression592.8541?Akaike info criterion15.84273Sum squared resid1757380.?Schwarz criterion15.82728Log likelihood-53

7、.44956?Hannan-Quinn criter.15.65172F-statistic10.96274?Durbin-Watson stat1.761325Prob(F-statistic)0.021217Dependent Variable: YMethod: Least SquaresDate: 06/07/15Time:11:20Sample: 12 18Included observations: 7VariableCoefficientStd. Errort-StatisticProb.?X0.7592910.1778984.2681250.0080C1243.7433707.

8、2380.3354900.7509R-squared0.784640?Mean dependent var16776.66Adjusted R-squared0.741567?S.D. dependent var3677.261S.E. of regression1869.382?Akaike info criterion18.13956Sum squared resid?Schwarz criterion18.12411Log likelihood-61.48846?Hannan-Quinn criter.17.94855F-statistic18.21689?Durbin-Watson s

9、tat2.037081Prob(F-statistic)0.007953有上图可知迟 e2,迟 e2 =1757380?F=?Se2 任 efi 在 a =0.05下,上式中分子、分母的自由度均为5,查F分布表得临界值F0.05 (5,5) =5.05,因为F=?F0.05 (5,5)=5.05,所以拒接原假设,说明模型存在异方差。?(请对得到的图表进行处理,以上在一页内)3.White检验法分别用White检验法检验模型【1】、模型【2】和模型【3】是否存在异方差。Eviews操作:先做模型,选 view/Residual Tests/ Heteroskedasticity Tests/Wh

10、ite/勾选cross terms).摘录主要结果附在本页内。模型【1】Heteroskedasticity Test: WhiteF-statistic440866?Prob. F(2,25)0.0156Obs*R-squared7.932189?Prob. Chi-Square(2)0.0189Scaled explained SS14.57723?Prob. Chi-Square(2)0.0007Test Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 06/07/15Time:12:44Sample: 197

11、8 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.?C-879.85131125.376-0.7818290.4417CS12.937204.6513282.7813980.0101CSA2-0.0066200.002964-2.2335610.0347R-squared0.283292?Mean dependent var1940.891Adjusted R-squared0.225956?S.D. dependent var4080.739S.E. of regression3590.22

12、5?Akaike info criterion19.31077Sum squared resid3.22E+08?Schwarz criterion19.45351Log likelihood-267.3508?Hannan-Quinn criter.19.35441F-statistic4.940866?Durbin-Watson stat2.144291Prob(F-statistic)0.015552模型【2】Heteroskedasticity Test: WhiteF-statistic1.993171?Prob. F(5,22)0.1195Obs*R-squared8.729438

13、?Prob. Chi-Square(5)0.1204Scaled explained SS14.67857?Prob. Chi-Square(5)0.0118Test Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 06/07/15Time: 12:47Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.?C1837.8986243.7010.2943600.7712GDPS-3.3950935.

14、407361-0.6278650.5366GDPSA2-9.08E-050.000185-0.4895370.6293GDPS*T0.1603000.3151760.5086040.6161T-491.56141982.891-0.2479010.8065TA249.08543152.98750.3208460.7514R-squared0.311766?Mean dependent var3461.910Adjusted R-squared0.155349?S.D. dependent var7240.935S.E. of regression6654.775?Akaike info cri

15、terion20.63147Sum squared resid9.74E+08?Schwarz criterion20.91694Log likelihood-282.8405?Hannan-Quinn criter.20.71874F-statistic1.993171?Durbin-Watson stat1.971537Prob(F-statistic)0.119510模型【3】Heteroskedasticity Test: WhiteF-statistic7.670826?Prob.F(2,15)0.0051Obs*R-squared9.101341?Prob.Chi-Square(2

16、)0.0106Scaled explained SS14.09286?Prob.Chi-Square(2)0.0009Test Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 06/07/15 Time: 12:51Sample: 1 18Included observations: 18VariableCoefficientStd. Errort-StatisticProb.?C1865425.2810916.0.6636360.5170X-354.7917388.1454-0.9140690.3751XA20.0

17、188100.0116861.6095970.1283R-squared0.505630?Mean dependent var1232693.Adjusted R-squared0.439714?S.D. dependent var2511199.S.E. of regression1879689.?Akaike info criterion31.88212Sum squared resid5.30E+13?Schwarz criterion32.03052Log likelihood-283.9391?Hannan-Quinn criter.31.90258F-statistic7.6708

18、26?Durbin-Watson stat2.010913Prob(F-statistic)0.005074(请对得到的图表进行处理,以上在一页内)4.Glejser检验法用Glejser检验法检验模型【11是否存在异方差。分别用残差的绝对值对自变量的一次项cSi、二次项CSi2,开根号项和倒数项1 CSi作回归。检验异方差是否存在,并选定异方差的最优形式。摘录主要结果附在本页内。一、一次项CSi回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:17Sample: 1978 2005Included obs

19、ervations: 28VariableCoefficientStd. Errort-StatisticProb.?CS0.0292360.0122792.3809470.0249C14.159918.2594921.7143800.0984R-squared0.179006?Mean dependent var27.30288Adjusted R-squared0.147429?S.D. dependent var35.20964S.E. of regression32.51074?Akaike info criterion9.869767Sum squared resid27480.66

20、?Schwarz criterion9.964925Log likelihood-136.1767?Hannan-Quinn criter.9.898858F-statistic5.668911?Durbin-Watson stat1.339465Prob(F-statistic)0.024881二、去掉常数项再回归?Dependent Variable: E1Method: Least SquaresDate: 06/07/15Time: 13:22Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort

21、-StatisticProb.?CS0.0433040.0094564.5794730.0001R-squared0.086198?Mean dependent var27.30288Adjusted R-squared0.086198?S.D. dependent var35.20964S.E. of regression33.65794?Akaike info criterion9.905436Sum squared resid30587.14?Schwarz criterion9.953015Log likelihood-137.6761?Hannan-Quinn criter.9.91

22、9981Durbin-Watson stat1.209310三、二次项cs2回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15Time: 13:19Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.?CSA21.11E-058.36E-061.3222070.1976C22.302367.5752862.9440940.0067R-squared0.063003?Mean dependent var27.

23、30288Adjusted R-squared0.026965?S.D. dependent var35.20964S.E. of regression34.73168?Akaike info criterion10.00193Sum squared resid31363.53?Schwarz criterion10.09709Log likelihood-138.0270?Hannan-Quinn criter.10.03102F-statistic1.748231?Durbin-Watson stat1.203183Prob(F-statistic)0.197614四、开根号项jCST回归

24、Dependent Variable: E1Method: Least SquaresDate: 06/07/15Time: 13:24Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.?CSA(1/2)1.5372330.2690365.7138480.0000R-squared0.265081?Mean dependent var27.30288Adjusted R-squared0.265081?S.D. dependent var35.20964S.E. of r

25、egression30.18432?Akaike info criterion9.687583Sum squared resid24599.52?Schwarz criterion9.735162Log likelihood-134.6262?Hannan-Quinn criter.9.702128Durbin-Watson stat1.471849五、倒数项1/CSi作回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15Time:13:26Sample: 1978 2005Included observations: 28Va

26、riableCoefficientStd. Errort-StatisticProb.?CSA(-1)-2029.779607.7392-3.3398840.0025C46.202298.0122115.7664840.0000R-squared0.300226?Mean dependent var27.30288Adjusted R-squared0.273311?S.D. dependent var35.20964S.E. of regression30.01483?Akaike info criterion9.710009Sum squared resid23423.14?Schwarz

27、 criterion9.805167Log likelihood-133.9401?Hannan-Quinn criter.9.739100F-statistic11.15483?Durbin-Watson stat1.566457Prob(F-statistic)0.002542从四个回归的结果看,第二个不显着,其他三个显着,比较这三个回归,还是选择第三个,方程为即异方差的形式为:a2=( 1.537233*(CSA(1 /2) ) 2=2.36085CS也即异方差的形式为:ai 2= a 2CS就把这个形式确定为异方差的形式。对ZJ与GDPS和T回归的Glejser检验可以类似进行检验,消

28、费支岀与可支配收入回归的Glejser检验可以类似进行检验。通过前面实验的异方差模型的检验,发现根据广东数据CZ对CS的回归,ZJ对GDPS和T的回归,消费支岀与可支配收入回归都存在异方差,现在分别对它们进行处理。加权最小二乘法已经成为 处理异方差模型的标准方法,再Eviews中使用 WLS来消除异方差,关键是权数的选取。(请对得到的图表进行处理,以上在一页内)(二)异方差的处理1模型【1】中CZ对CS回归异方差的处理已知CZ对CS回归异方差的形式为:G2 =2CSi,选取权数,使用加权最小二乘 法处理异方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理 异方差。摘录

29、主要结果附在本页内。Dependent Variable: CZMethod: Least SquaresDate: 06/07/15 Time: 13:32Sample: 1978 2005Included observations: 28Weighting series: 1/(CSA(1/2)VariableCoefficientStd. Errort-StatisticProb.?CS1.2756770.01940665.736280.0000C-21.243654.264097-4.9819800.0000Weighted StatisticsR-squared0.994019 ?M

30、ean dependent var254.4606Adjusted R-squared0.993789 ?S.D. dependent var189.1988S.E. of regression22.86683 ?Akaike info criterion9.166001Sum squared resid13595.19 ?Schwarz criterion9.261159Log likelihood-126.3240 ?Hannan-Quinn criter.9.195092F-statistic4321.259 ?Durbin-Watson stat1.550317Prob(F-stati

31、stic)0.000000Unweighted StatisticsR-squared0.995276 ?Mean dependent var552.2429Adjusted R-squared0.995095 ?S.D. dependent var653.1881S.E. of regression45.74872 ?Sum squared resid54416.57Durbin-Watson stat1.545575回归方程为它与存在异方差的如下方程估计有所不同。至于经过加权最小二乘法估计的残差项是否存在异方差,同样可以用本实验的异方差模型的检验去检 验,但是若在eviews中使用wls命

32、令估计的序列resed不能用俩检验,因为产生的序列resid是非加权方 式的残差。要想检验只能自己进行同方差变换,然后回归以后再检验了。进行同方差行变换,然后回归实际上就是CZ/(CSA(1/2)对1/(CSA(1/2)和CS/(CSA(1/2)回归,结果如下:Dependent Variable: CZ/(CSA(1/2)Method: Least SquaresDate: 06/07/15 Time: 13:39Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.?1/

33、(CSA(1/2)-21.243654.264097-4.9819800.0000CS/(CSA(1/2)1.2756770.01940665.736280.0000R-squared0.985934?Mean dependent var21.13688Adjusted R-squared0.985393?S.D. dependent var15.71588S.E. of regression1.899444?Akaike info criterion4.189748Sum squared resid93.80503?Schwarz criterion4.284906Log likelihoo

34、d-56.65647?Hannan-Quinn criter.4.218839Durbin-Watson stat1.550317观察其残差趋势图还是存在异方差,再改为 CZ/CS对1/CS和回归,如果如下Dependent Variable: CZ/CSMethod: Least SquaresDate: 06/07/15 Time: 13:42Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.?1/CS-19.828602.064540-9.6043680.0000C

35、1.2625010.02721846.384560.0000R-squared0.780115?Mean dependent var1.077876Adjusted R-squared0.771658?S.D. dependent var0.213378S.E. of regression0.101963?Akaike info criterion-1.659667Sum squared resid0.270307?Schwarz criterion-1.564510Log likelihood25.23534?Hannan-Quinn criter.-1.630577F-statistic9

36、2.24388?Durbin-Watson stat1.613436Prob(F-statistic)0.000000观察其残差趋势图(请对得至U的图表进行处理,以上在两页内 )2模型【2】中ZJ对GDPS和T回归异方差的处理23已知ZJ对GDPS和T回归异方差的形式为:G2 =匚2 GDPSi 4,选取权数,使用加 权最小二乘法处理异方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理 异方差。摘录主要结果附在本页内。Dependent Variable: ZJMethod: Least SquaresDate: 06/07/15 Time: 13:46Sample:

37、 1978 2005Included observations: 28Weighting series: 1/(GDPSA(3/8)VariableCoefficientStd. Errort-StatisticProb.?GDPS0.1669950.00256565.100680.0000T-4.3536850.881296-4.9400930.0000Weighted StatisticsR-squared0.997009?Mean dependent var418.9342Adjusted R-squared0.996894?S.D. dependent var382.1762S.E.

38、of regression29.59878?Akaike info criterion9.682092Sum squared resid22778.28?Schwarz criterion9.777250Log likelihood-133.5493?Hannan-Quinn criter.9.711183Durbin-Watson stat0.668750Unweighted StatisticsR-squared0.996289 ?Mean dependent var846.0661Adjusted R-squared0.996146 ?S.D. dependent var1014.824

39、S.E. of regression63.00261 ?Sum squared resid103202.6Durbin-Watson stat0.754208它与存在异方差时的如下方程估计也有所不同。进行同方差性变换,然后回归实际上就是ZJ/(GDPSA(8/3) 对GDPS/(GDPSA(8/3)和T/(GDPSA(8/3)回归,结果如下:Dependent Variable: ZJ/(GDPSA(3/8)Method: Least SquaresDate: 06/07/15Time: 13:50Sample: 1978 2005Included observations: 28Variab

40、leCoefficientStd. Errort-StatisticProb.?GDPS/(GDPSA(3/8)0.1669950.00256565.100680.0000T/(GDPSA(3/8)-4.3536850.881296-4.9400930.0000R-squared0.994224?Mean dependent var27.59529Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.9940021.94967898.83235-57.387370.6

41、68750?S.D. dependent var ?Akaike info criterion ?Schwarz criterion ?Hannan-Quinn criter.25.174034.2419554.3371124.271045观测其残差趋势图可能还存在异方差,再改为ZJ/GDPS对C和T/GDPS回归,结果如下:Dependent Variable: ZJ/GDPSMethod: Least SquaresDate: 06/07/15 Time: 13:52Sample: 1978 2005Included observations: 28VariableCoefficientS

42、td. Errort-StatisticProb.?C0.1619500.00346146.793580.0000T/GDPS-3.7265040.399838-9.3200440.0000R-squared0.769633?Mean dependent var0.135596Adjusted R-squared0.760772?S.D. dependent var0.021590S.E. of regression0.010560?Akaike info criterion-6.194729Sum squared resid0.002899?Schwarz criterion-6.09957

43、2Log likelihood88.72621?Hannan-Quinn criter.-6.165638F-statistic86.86322?Durbin-Watson stat0.439676Prob(F-statistic)0.000000观测其残差趋势图应该不存在异方差了,其方程为变换为原方程(请对得至U的图表进行处理,以上在两页内)3. 模型【3】中消费支出Y对可支配收入X回归异方差的处理4已知丫对X回归异方差的形式为:-ic2 Xi 3,选取权数,使用加权最小二乘 法处理异方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理 异方差。摘录主要结果附在本页内

44、。Dependent Variable: YMethod: Least SquaresDate: 06/07/15 Time: 13:56Sample: 1 18Included observations: 18Weighting series: 1/XA(2/3)VariableCoefficient Std. Error t-Statistic Prob.?X0.7951570.01725246.090120.0000Weighted StatisticsR-squared0.954867 ?Mean dependent var9599.510Adjusted R-squared0.954

45、867 ?S.D. dependent var1867.615S.E. of regression895.7229 ?Akaike info criterion16.48709Sum squared resid?Schwarz criterion16.53656Log likelihood-147.3838 ?Hannan-Quinn criter.16.49391Durbin-Watson stat1.472431Unweighted StatisticsR-squared0.952547 ?Mean dependent var10906.35Adjusted R-squared0.9525

46、47 ?S.D. dependent var5381.587S.E. of regression1172.315 ?Sum squared residDurbin-Watson stat1.419465它与存在异方差时如下方程估计明显不同进行同方差性变换,然后回归实际上就是Y/(XA(2/3) 和X/(XA(2/3)回归,结果如下:Dependent Variable: Y/(XA(2/3)Method: Least SquaresDate: 06/07/15 Time: 13:59Sample: 1 18Included observations: 18VariableCoefficientStd. Errort-StatisticProb.?1/(XA(2/3)-495.5562520.4173-0.9522280.3551X/(XA(2/3)0.8337080.04402618.936730.0000R-squared0.782313?Mean dependent var18.56257Adjusted R-squared0.768707?S.D. depe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论