人教A版北京初升高衔接课程C专题二次函数的简单应用4星_第1页
人教A版北京初升高衔接课程C专题二次函数的简单应用4星_第2页
人教A版北京初升高衔接课程C专题二次函数的简单应用4星_第3页
人教A版北京初升高衔接课程C专题二次函数的简单应用4星_第4页
人教A版北京初升高衔接课程C专题二次函数的简单应用4星_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题:二次函数的简单应用()教学目标灵活应用二次函数解决动点问题、最值问题、面积问题。知识梳理 10min.动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。第三,确定自变量的取值范围,画出相应的图象。利用二次函数解决最值问题,的一般步骤:第一步设自变量

2、;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。利用二次函数解决面积问题:通过观察、分析、概括、总结的方法了解二次函数面积问题的基本类型,并力争熟练掌握二次函数中面积问题的相关计算.在二次函数的综合题目中常常涉及到与面积相关的问题,研究思路为:(1)分析图形的成因(2)识别图形的形状(3)找出图形的计算方法(4)在求图形的面积时常常使用到以下公式: 抛物线解析式y=ax2 +bx+c (a0)抛物线与x轴两交点的距离AB=x1x2=抛物线顶点坐标(-, )典例精讲 18min.() 例1 如图,在平面直角坐标系xO

3、y中,直线AB与x轴交于点A, 与y轴交于点B, 且OA = 3,AB = 5点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QBBOOP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求APQ的面积S与t之间的函数关系式(不必写出t的取值范围); 【答案】解:(1)在RtAOB中,OA = 3,AB = 5,由勾股定理

4、得.A(3,0),B(0,4)设直线AB的解析式为. 解得 直线AB的解析式为2分(2)如图,过点Q作QFAO于点F. AQ = OP= t,由AQFABO,得 ,() 例2 在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上. (1) 求点B的坐标; (2) 点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D。使得ED=PE. 以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动) j 当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; k 若P点从O点出发向A点作匀速运

5、动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值.xyO11【答案】解:(1) 拋物线y= -x2+x+m2-3m+2经过原点,m2-3m+2=0,解得m1=1,m2=2, 由题意知m1,m=2,拋物线的解析式为y= -x2+x,点B(2,n)在拋物线OAB

6、CDEPyx图1 y= -x2+x上,n=4,B点的坐标为(2,4)。 (2) j 设直线OB的解析式为y=k1x,求得直线OB的解析式为 y=2x,A点是拋物线与x轴的一个交点,可求得A点的 坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为 (a,2a),根据题意作等腰直角三角形PCD,如图1。可求 得点C的坐标为(3a,2a),由C点在拋物线上,得 2a= -(3a)2+3a,即a2-a=0,解得a1=,a2=0 (舍去),OP=。 k 依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,由点A(10,0), 点B(2,4),求得直线AB的解析式为y= -x+5,

7、当P点运动到t秒时,两个等腰 直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况: 第一种情况:CD与NQ在同一条直线上。如图2所示。可证DPQ为等腰直角三 角形。此时OP、DP、AQ的长可依次表示为t、4t、2t个单位。PQ=DP=4t, t+4t+2t=10,t=。 第二种情况:PC与MN在同一条直线上。如图3所示。可证PQM为等腰直角三 角形。此时OP、AQ的长可依次表示为t、2t个单位。OQ=10-2t,F点在 直线AB上,FQ=t,MQ=2t,PQ=MQ=CQ=2t,t+2t+2t=10,t=2。 第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示。此时OP、

8、AQ的长可依次表示为t、2t个单位。t+2t=10,t=。综上,符合题意的图4yxBOQ(P)NCDMEF t值分别为,2, 。ExOABCyPMQNFD图2xyOAM(C)B(E)DPQFN图3() 例3 如图,抛物线y=x2+bx2与x轴交于A、B两点,与y轴交于C点,且A(一1,0)求抛物线的解析式及顶点D的坐标;判断ABC的形状,证明你的结论;点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值【答案】(1)点A(-1,0)在抛物线y=x2 + bx-2上, (-1 )2 + b (-1) 2 = 0,解得b =抛物线的解析式为y=x2-x-2. y=x2-x-2 = (

9、 x2 -3x- 4 ) =(x-)2-,顶点D的坐标为 (, -). (2)当x = 0时y = -2, C(0,-2),OC = 2。当y = 0时, x2-x-2 = 0, x1 = -1, x2 = 4, B (4,0)OA = 1, OB = 4, AB = 5.AB2 = 25, AC2 = OA2 + OC2 = 5, BC2 = OC2 + OB2 = 20,AC2 +BC2 = AB2. ABC是直角三角形.(3)作出点C关于x轴的对称点C,则C(0,2),OC=2,连接CD交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小。解法一:设抛物线的对称轴交x

10、轴于点E.EDy轴, OCM=EDM,COM=DEMCOMDEM. ,m =解法二:设直线CD的解析式为y = kx + n ,则,解得n = 2, . .当y = 0时, , . .() 例4 已知顶点为A(1,5)的抛物线经过点B(5,1). (1)求抛物线的解析式; (2)如图(15.1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD周长的最小值(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P(x,y)(x0)是直线y=x上的一个动点,Q是OP的中点,以PQ为斜边按图(15.2)所示构造等腰直角三角形PRQ.当PBR与直线CD有公共点时,求x的取值范围;在的条

11、件下,记PBR与COD的公共部分的面积为S.求S关于x的函数关系式,并求S的最大值。 【答案】解:.设以A(1,5)为顶点的二次函数解析式为的图像经过了点B(5,5) 解得即:.如图,作点A关于y轴对称点,与y轴交与点D,作点B关于x轴对称点,与x轴交与点C,连接AD,AC,CB,BA.四边形ABCD的周长最小。A(1,5),B(5,1) .如图直线AB的解析式为直线与直线的交点,点Q为OP的中点PBR与直线CD有公共点,即() 例5 如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴是,B(4,2),一次函数的图象平分它的面积,关于x的函数的图象与坐标轴只有两个交点,求m的值.【答

12、案】 解:过B作BEAD于E,连结OB、CE交于 点P, P为矩形OCBE的对称中心,则过P点的直线平分矩形OCBE的面积.P为OB的中点,而B(4,2)P点坐标为(2,1)在RtODC与RtEAB中,OCBE,ABCDRtODCRtEAB(HL),SODCSEBA过点(0,-1)与P(2,1)的直线即可平分等腰梯形面积,这条直线为y=kx-12k-1=1,k=1又的图象与坐标轴只有两个交点,故当m0时,y-x+1,其图象与坐标轴有两个交点(0,1),(1,0)当m0时,函数的图象为抛物线,且与y轴总有一个交点(0,2m+1)若抛物线过原点时,2m+1=0,即m=,此时(3m+1)2-4m(2

13、m+1)=0抛物线与x轴有两个交点且过原点,符合题意. 若抛物线不过原点,且与x轴只有一个交点,也合题意,此时(3m+1)2-4m(2m+1)=0解之得:m1=m2=-1综上所述,m的值为m=0或或-1.() 例6 如图,抛物线yax2c(a0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(2,0),B(1, 3) (1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使SPAD4SABM成立,求点P的坐标【答案】 (1)、因为点A、B均在抛物线上,故点A、B的坐标适合抛物线方程 解之得

14、:;故为所求(2)如图2,连接BD,交y轴于点M,则点M就是所求作的点设BD的解析式为,则有,故BD的解析式为;令则,故(3)、如图3,连接AM,BC交y轴于点N,由(2)知,OM=OA=OD=2,图3易知BN=MN=1,易求;设,依题意有:,即:解之得:,故 符合条件的P点有三个:巩固练习 10min.1、() 在平面直角坐标系xOy中,抛物线经过P(,5)A(0,2)两点。(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标。x12

15、33421-1-2-3-2-4yBA(M2)M4M3CNOlM1【答案】解:(1)根据题意得解得所以抛物线的解析式为。(2)由得抛物线的顶点坐标为。依题意,可得,且直线过原点。设直线的解析式为。则,解得。所以直线的解析式为。(3)到直线距离相等的点有四个。如图,由勾股定理得,所以为等边三角形。易证轴所在直线平分,轴是的一个外角的平分线。作的平分线,交轴于点,交轴于点,作的相邻外角的平分线,交轴于点,反向延长交轴于点。可得点就是到直线OB,OC,BC距离相等的点。可证,均为等边三角形。可求得:,所以点M1的坐标为。点M2与点A重合,所以点M2的坐标为(0,2)。点M3与点A关于x轴对称,所以点M

16、3的坐标为(0,-2)。设抛物线的对称轴与x轴的交点为N。,且ON=M4N,所以点M4的坐标为。综上所述,到直线OB,OC,BC距离相等的点的坐标分别为,M2(0,2),。2、()如图,抛物线交轴于点,点,交轴于点点C是点A关于点B的对称点,点F是线段BC的中点,直线过点F且与轴平行直线过点C,交轴于点D(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;图 备用图【答案】 解:(1)设抛物线的函数表达式抛物线与轴交于点,将该点坐标代入上式,得所求函数表达式,即(2)点C是点A关于点B的对称点,点,点,点C的坐

17、标是将点C的坐标是代入,得直线CD的函数表达式为设K点的坐标为,则H点的坐标为,G点的坐标为点K为线段AB上一动点,当时,线段HG长度有最大值3、()在直角坐标系xoy中,已知点P是反比例函数图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A(1)如图1,P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由(2)如图2,P运动到与x轴相交,设交点为B,C当四边形ABCP是菱形时:求出点A,B,C的坐标APxyKO图1在过A,B,C三点的抛物线上是否存在点M,使MBP的面积是菱形ABCP面积的若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由【答案】解:(1)P

18、分别与两坐标轴相切, PAOA,PKOK PAO=OKP=90 又AOK=90, PAO=OKP=AOK=90 四边形OKPA是矩形 又OA=OK, 四边形OKPA是正方形 OAPxyBC图2GM(2)连接PB,设点P的横坐标为x,则其纵坐标为过点P作PGBC于G四边形ABCP为菱形,BC=PA=PB=PCPBC为等边三角形在RtPBG中,PBG=60,PB=PA=x,PG=sinPBG=,即解之得:x=2(负值舍去) PG=,PA=BC=2 易知四边形OGPA是矩形,PA=OG=2,BG=CG=1,OB=OGBG=1,OC=OG+GC=3 A(0,),B(1,0) C(3,0)设二次函数解析式为:y=ax2+bx+c据题意得:解之得:a=, b=, c=二次函数关系式为: 解法一:设直线BP的解析式为:y=ux+v,据题意得: 解之得:u=, v=直线BP的解析式为:过点A作直线AMPB,则可得直线AM的解析式为:解方程组:得: ; 过点C作直线CMPB,则可设直线CM的解析式为: 0= 直线CM的解析式为:解方程组:得: ; 综上可知,满足条件的M的坐标有四个,分别为:(0,),(3,0),(4,),(7,)解法二:,A(0,),C(3,0)显然满足条件延长A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论