版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2018-2019年重庆数学高三水平会考真题及答案解析班级:_ 姓名:_ 分数:_题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上评卷人得分一、选择题1.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y216x的准线交于A,B两点,|AB|4,则C的实轴长为( )AB2C4D8【答案】C【解析】设C:1抛物线y216x的准线为x4,联立1和x4得A(4,),B(4,),|AB|24,a2,2a4C的实轴长为42.已知数列an满足a11,an1,则其前6项之和是()A16B20C33D120【答案】C【解析】a22a12,a3a213,a42
2、a36,a5a417,a62a514,所以S6123671433,选C.3.设是第二象限角,P(x,4)为其终边上的一点,且cosx,则tan()ABCD【答案】D【解析】是第二象限角,cosx0,即x0.又cosx,解得x3,tan.4.已知,则的最小值和最大值分别为()AB-2,CD-2,【答案】A【解析】试题分析:,因为,所以,当时,.故A正确.考点:1诱导公式、二倍角公式;2二次函数求最值.5.(5分)(2011陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来
3、领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A(1)和(20)B(9)和(10)C(9)和(11)D(10)和(11)【答案】D【解析】试题分析:根据已知中某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,我们设树苗集中放置的树坑编号为x,并列出此时各位同学从各自树坑前来领取树苗所走的路程总和,根据绝对值的性质,结合二次函数的性质即可得到使各位同学从各自树坑前来领取树苗所走的路程总和最小时,树苗放置的最佳坑位的编号解:设树苗可以放置的两个最佳坑位的编号为x则各位同学从各自树坑前来领取树苗所走的路程总和为:S=|1x|10+|2x|10+|20x|10
4、若S取最小值,则函数y=(1x)2+(2x)2+(20x)2=20x2420x+(12+22+202)也取最小值由二次函数的性质,可得函数y=20x2420x+(12+22+202)的对称轴为y=10.5又为正整数,故x=10或11故选D点评:本题考查的知识点是函数最值的应用,其中根据绝对值的定义,我们将求一个绝对值函数最值问题,转化为一个二次函数的最值问题是解答本题的关键6.运行如下程序框图,如果输入的t-1,3,则输出s属于 ( )A-3,4B-5,2C-4,3D-2,5【答案】A【解析】由题意知,当t时,S=3t,当t1,3时,S=4t-t23,4,输出s属于-3,4,故选.7.如果,那
5、么a、b间的关系是()ABCD【答案】B【解析】试题分析:首先有,其次由得,则,所以,故选B.考点:对数函数的性质.8.已知回归直线的斜率的估计值是,样本点的中心为,则回归直线方程是()ABCD【答案】C【解析】试题分析:由题意可知:,且直线过,所以直线方程为考点:1.回归直线的方程.9.设,分别为双曲线:的左、右焦点,为双曲线的左顶点,以为直径的圆交双曲线某条渐近线于、两点,且满足,则该双曲线的离心率为()ABCD【答案】A【解析】试题分析:如下图所示,又,,,.故选A考点:1、双曲线的标准方程;2、双曲线的几何性质;3、勾股定理.10.设全集,集合,则等于()ABCD【答案】D【解析】试题
6、分析:因为,所以,=.选D.考点:集合的运算评卷人得分二、填空题11.若函数yf(x)是函数yax(a0,且a1)的反函数,且f(2)1,则f(x)_.【答案】log2x【解析】f(x)logax,f(2)1,loga21.a2.f(x)log2x.12.已知点满足,则的最小值是【答案】【解析】试题分析:根据线性规划的知识画出不等式的可行域如图所示,则目标函数在交点处取得最小值为,故填.考点:线性规划13.若函数满足,且时,函数,则函数在区间内的零点的个数为_.【答案】9【解析】试题分析:因为,所以函数是周期为2函数因为时,所以作出它的图象,利用函数是周期为2函数,可作出在区间上的图象,如图所
7、示:故函数在区间内的零点的个数为9,故答案为9考点:函数的零点;函数的周期性14.若函数在的最大值为4,最小值为,则实数的值是【答案】或.【解析】试题分析:若,则在上为增函数,所以有,得;若,则在上为减函数,所以有,得,综上,实数的值是或.考点:指数函数的单调性.15.机器人“海宝”在某圆形区域表演“按指令行走”如图所示,“海宝”从圆心出发,先沿北偏西方向行走13米至点处,再沿正南方向行走14米至点处,最后沿正东方向行走至点处,点、都在圆上则在以圆心为坐标原点,正东方向为轴正方向,正北方向为轴正方向的直角坐标系中圆的方程为.【答案】【解析】试题分析:如图所示:设OA与正北方向的夹角为,则由题意
8、可得sin=,OA=13,cosAOD=sin=,OD=OAcosAOD=13=12,AD=OAsinAOD=13=5,BD=14-AD=9,OB2=OD2+BD2=144+81=225,故圆O的方程为 x2+y2=225,即为所求。考点:圆的方程点评:中档题,利用数形结合思想,在坐标系中根据三角函数的定义,确定“边角关系”。评卷人得分三、解答题16.在ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A3cos(BC)1.(1)求角A的大小;(2)若ABC的面积S5,b5,求sin Bsin C的值【答案】(1)(2)【解析】(1)由cos 2A3cos(BC)1,得2cos2A
9、3cos A20,即(2cos A1)(cos A2)0,解得cos A或cos A2(舍去)因为0A,所以A,(2)由Sbcsin Abcbc5,得bc20.又b5,知c4.由余弦定理,得a2b2c22bccos A25162021,故a.又由正弦定理得sin Bsin Csin Asin Asin2A.17.如图,已知抛物线焦点为,直线经过点且与抛物线相交于,两点()若线段的中点在直线上,求直线的方程;()若线段,求直线的方程【答案】();()【解析】试题分析:()根据已知条件设出未知的点的坐标和斜率,根据两点间的斜率公式和中点坐标公式找等价关系,求出直线的斜率,由已知得的根据斜截式求出直
10、线方程; ()设出直线的方程为,这样避免讨论斜率的存在问题,与抛物线的方程联立方程组,得到根与系数的关系,根据直线与抛物线相交的交点弦的长来求参数的值试题解析:解:()由已知得交点坐标为,2分设直线的斜率为,,中点则,所以,又,所以 4分故直线的方程是: 6分()设直线的方程为, 7分与抛物线方程联立得,消元得, 9分所以有, 11分所以有,解得, 13分所以直线的方程是:,即 15分考点:1、直线的方程;2、直线与圆锥曲线的关系18.设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点)(I)求椭圆的方程;(II)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值【答
11、案】(I)椭圆的方程为;(II)当时,故【解析】试题分析:(I)由题设知, 由,得解得所以椭圆的方程为(II)方法1:设点,因为的中点坐标为,所以所以因为点在圆上,所以,即因为点在椭圆上,所以,即故因为,所以当时,法2:由题知圆N: 的圆心为N;则从而求的最大值转化为求的最大值;因为点在椭圆上,设点所以,即又因为,所以;因为,所以当时,故方法3:若直线的斜率存在,设的方程为,由,解得因为是椭圆上的任一点,设点,所以,即所以故因为,所以当时,故若直线EF的斜率不存在,此时EF的方程为; 由,解得或.不妨设E(0,3),F(0,1); 因为点在椭圆上,设点所以,即所以,故因为,所以当时,故考点:本
12、题主要考查椭圆的标准方程,直线与椭圆的位置关系,平面向量的坐标运算。点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)注意讨论直线的斜率存在、不存在两种情况,易于忽视。熟练进行平面向量的坐标运算,是正确解题的关键。19.(理科)(本小题满分12分)如图分别是正三棱台ABCA1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点(1)求正三棱台ABCA1B1C1的体积;(2)求平面EA1B1与平面A1B1C1的夹角的余弦;(3)若P是棱A1C1上一点,求CPPB1的最小值【答案】(1);(2);(3)最小值为。【解析】试题分析:(1)由题意,正三棱台高为 .2分 .4分(2)设分别是上下底面的中心,是中点,是中点.以为原点,过平行的线为轴建立空间直角坐标系. , ,设平面的一个法向量,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人的简单借款合同
- 国际贸易协议样本
- 厂房租赁合同范例
- 特色农产品胡柚购销合同法律问题探讨
- 共同投资开设武术馆协议
- 标准入职协议书范例
- 旅行社与导游劳动合同范本
- 2023年高考地理第一次模拟考试卷-(湖南A卷)(全解全析)
- 房地产代理合同模板
- 2024年建筑渣土运输合同范文
- 高中生学法指导课件
- GB/T 12363-2005锻件功能分类
- 探索名师成长之路-解读教师专业成长
- AOSC急性梗阻化脓性胆管炎课件
- 动力网站-艾默生netsure801电源系统用户手册
- PCV诊断鉴别及其治疗课件
- 地方课程泰顺廊桥课件
- cf战队收人口号精彩5篇
- 中国传统文化中的管理智慧
- 装配式建筑综合设计组任务书
- 第七单元整体教学设计-高中语文新教材必修上册单元备课+群文阅读-课件
评论
0/150
提交评论