版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、安徽省2012年普通高等学校专升本招生考试高等数学注意事项:1试卷共8页,请用签字笔答题,答案按要求写在指定的位置。2答题前将密封线内的项目填写完整。一、选择题(下列每小题的选项中,只有一项是符合题意的,请将表示该选项的字母填在题后的括号内。共10小题,每小题3分,共30分)1.若函数在在处连续,则( C )A. 0 B. 1 C. 2 D. 3解:由得,故选C.2.当时,与函数是等价无穷小的是( A )A. B. C. D. 解:由,故选A.3.设可导,则=( D )A. B. C. D. 解:,故选D.4.设是 的一个原函数,则( B )A. B. C. D. 解:因是 的一个原函数,所以
2、,所以故选B.5.下列级数中收敛的是( C )A. B. C. D. 解:因,所以收敛, 故选C.yy=2xy=x2O 1 x216.交换的积分次序,则下列各项正确的是( B )A. B. C. D. 解:由题意画出积分区域如图:故选B.7.设向量是非齐次线性方程组AX=b的两个解,则下列向量中仍为该方程组解的是( D )A. B. C. D. 解:因同理得 故选D.8.已知向量线性相关,则( D )A. -2 B. 2 C. -3 D. 3解: 由于线性相关,所以,因此9.设为事件,且则( A )A.0.2 B. 0. 4 C. 0.6 D. 0.8解: 10.有两个口袋,甲袋中有3个白球和
3、1个黑球,乙袋中有1个白球和3个黑球.现从甲袋中任取一个球放入乙袋,再从乙袋中任取一个球,则取出白球的概率是( B )A. B. C. D. 解: 由全概率公式得 二、填空题(本题共10小题,每小题3分,共30分,把答案填在题中横线上。)11设函数,则函数的定义域为.解:.12设曲线在点M处的切线斜率为3,则点M的坐标是.解:,由,从而,故填.13设函数,则.解:,.14 .解:.15= e .解:.16幂级数的收敛域为.解:由.得级数收敛,当时,级数为收敛; 当时,级数为发散;故收敛域为.17设A是n阶矩阵,E是n阶单位矩阵,且则.解:18设,记表示A的逆矩阵, 表示A的伴随矩阵,则.19设
4、型随机变量且则= .解:由正态分布的对称性得.20设型随机变量在区间上服从均匀分布,则方差.解:直接由均匀分布得.三、计算题:本大题共8小题,其中第21-27题每题7分,第28题11分,共60分。21计算极限.解:原式= =0.22求由方程确定的隐函数的导数.解:两边取对数得,两边求导得,从而.23计算定积分解:令,则当时, ;当时, .所以原式= = = = .24求微分方程的通解.解:原方程可整理为这是一阶线性微分方程,其中.所以原方程的通解为.25计算二重积分,其中是由直线所围成的区域.yy=2xxy=2xO1 242解:区域D如图阴影部分所示.故.26设矩阵,且满足,求矩阵X.O xy
5、y=x21图5-7解:由可得因,所以可逆,因此27设行列式,求在处的导数.解:.故.从而.28已知离散型随机变量X的密度函数为且数学期望.求: (1) a的值; (2) X的分布列;(3)方差D(X )解:(1) 由分布函数的性质知,随机变量X的可能取值为0、1、2,且因所以.(2) 由(1)即得X的分布列为012(3) ,解:由题意知: ,故.四、证明题与应用题:本大题共3小题,每小题10分,共30分。29设,其中可微,.证明:因为 ,故 . (9分)30设D是由曲线及x轴所围成的的平面区域yOxy=lnx1e(e,1)求: (1) 平面区域D的面积S; (2) D绕y轴旋转一周所成的旋转体的体积V解:区域D如图阴影部分所示。曲线与x轴及的交点坐标分别为(1)平面区域D的面积.(2)D绕y轴旋转一周所成的旋
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年粤教版高二语文下册月考试卷
- 2025年统编版2024高二语文下册阶段测试试卷含答案
- 2025年苏科版必修2物理上册阶段测试试卷
- 2025年沪教版选修6地理上册阶段测试试卷含答案
- 2025年沪科新版九年级历史下册月考试卷
- 2025年人教版(2024)九年级历史上册月考试卷含答案
- 2025年度住宅小区暖通设备更新换代合同4篇
- 2025年度特色菜系厨师劳动合同模板4篇
- 中英对照2024年服务出口合同样本
- 2025年度木地板施工与室内空气质量保障合同4篇
- 2024公路沥青路面结构内部状况三维探地雷达快速检测规程
- 2024年高考真题-地理(河北卷) 含答案
- 中国高血压防治指南(2024年修订版)解读课件
- 2024年浙江省中考科学试卷
- 2024风力发电叶片维保作业技术规范
- 《思想道德与法治》课程教学大纲
- 2024光储充一体化系统解决方案
- 2024年全国高考新课标卷物理真题(含答案)
- 处理后事授权委托书
- 食材配送服务方案投标方案(技术方案)
- 足疗店营销策划方案
评论
0/150
提交评论