下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.1.1 二次函数一、教学目标1.结合具体情境体会二次函数的意义,理解二次函数的有关概念. 2.能够表示简单变量之间的二次函数关系. 二、课时安排1课时三、教学重点体会二次函数的意义,理解二次函数的有关概念.四、教学难点能够表示简单变量之间的二次函数关系.五、教学过程(一)导入新课情景问题:正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.显然,对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为 y=6x2. (1)(二)讲授新课问题1:n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?分析:每个队要与其他(n-1)支球队各
2、比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数是 (2) 问题2:某种产品现在的年常量是20 t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?分析: 这种产品的原产量是20 t,一年后的产量是20(1+x) t,再经过一年后的产量是20(1+x)(1+x) t,即两年后的产量 (3)活动2:探究归纳函数(1)(2)(3)有什么共同点?明确:一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数,叫做二次函数.(三)重难点精讲例1 用总长为60m的篱笆围成矩形场地,
3、场地面积S(m)与矩形一边长a(m)之间的关系是什么?例2 (1)m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是二次函数? 解:由(1)可知, 解得:由(2)可知,解得m=3归纳:本题考查正比例函数和二次函数的概念,这类题紧扣概念的特征进行解题.尤其第2问要保证二次项系数m+30.例3 下列函数中,(x是自变量),哪些是二次函数?为什么? y=ax2+bx+c s=3-2t y=x2 y=x+x+25 y=(x+3)-x 明确:不一定是,缺少a0的条件;不是,右边是分式;不是,x的最高次数是3;可以化成y=6x+9。(四)归纳小结小结:判断一个函数是不是二次函数,先看原函数
4、和整理化简后的形式再作判断.除此之外,二次函数除有一般形式y=ax2+bx+c(a0)外,还有其特殊形式如y=ax2,y=ax2+bx,y=ax2+c等.(五)随堂检测1、把y=(2-3x)(6+x)变成一般式,二次项为_,一次项系数为_,常数项为 .2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( )A . m,n是常数,且m0 B . m,n是常数,且n0C. m,n是常数,且mn D . m,n为任何实数3下列函数是二次函数的是 ( )Ay2x1 BCy3x21 D 4.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求 (1)y与x之间的函数解析式及自变量x的取值范围; (2)当x=3时矩形的面积.【答案】1. -3x2 ;-16;12;2.C3.C4. 解:(1)y(8x)xx28x (0x8);(2)当x3时,y328315 cm2 .六板书设计二次函数一般形式: y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同修改注意事项全解析
- 汽车配件订购协议
- 疫情防治药品紧急采购协议
- 婚庆策划合作细则
- 用功学习保证书
- 房屋买卖意向书签订注意事项详解
- 采购代表合同样式
- 生态休闲农业项目规划案
- 外墙裂纹修补涂料样本
- 标准贷款合同格式
- 并购功夫:2015本土并购十大经典案例详解
- 宇通客车新媒体运营与传播方案
- 国家开放大学《行政组织学》形考1-5标准答案
- 租赁房屋交接清单49226
- 公司4M变更申请通知书
- 2014高考语文一轮复习课外文言训练-文天祥传
- 国开作业《建筑制图基础》学习过程表现参考22
- 《愚公移山》比较阅读16篇(历年中考语文文言文阅读试题汇编)(含答案与翻译)(截至2021年)
- 食品安全BRCGS包装材料全球标准第六版管理手册及程序文件
- 物流公司人员配置及岗位职责(6篇)
- DB11-T1497-2017学校及托幼机构饮水设备使用维护规范
评论
0/150
提交评论