版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题13等差与等比数列 考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.等差数列及其性质理解等差数列的概念;掌握等差数列的通项公式与前n项和公式;能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;了解等差数列与一次函数的关系理解2017课标全国,4;2016浙江,6;2016天津,18;2015北京,6选择题填空题2.等差数列前n项和公式掌握2017课标全国,9;2016课标全国,3;2015浙江,3选择题填空题分析解读1.理解等差数列的概念、等差数列的通项公式与前n项和公式.2.体会等差数列与一次函数的关系,掌握等差数列的一些基本性质.3.命题以求an,Sn为主
2、,考查等差数列相关性质.4.本节内容在高考中主要考查数列定义、通项公式、前n项和公式及性质,分值约为5分,属中低档题.考点内容解读要求高考示例常考题型预测热度1.等比数列及其性质理解等比数列的概念;掌握等比数列的通项公式与前n项和公式;能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;了解等比数列与指数函数的关系理解2017课标全国,3;2016课标全国,15;2015课标,4选择题填空题解答题2.等比数列前n项和公式掌握2017江苏,9;2014课标,17选择题填空题解答题分析解读1.理解等比数列的概念、掌握等比数列的通项公式和前n项和公式.2.体会等比数列与指数函数的关
3、系.3.求通项公式、求前n项和及等比数列相关性质的应用是高考热点.2018年高考全景展示1.【2018年理新课标I卷】设为等差数列的前项和,若,则A. B. C. D. 【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.2【2018年理北京卷】设是等差数列,且a1=3,a2+a5=36,则的通项公式为_【答案】【解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项
4、公式即可.详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.3【2018年理新课标I卷】记为数列的前项和,若,则_【答案】【解析】分析:首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值.详解:根据,可得,两式相减得,即,当时,解得,所以数列是以-1为首项,以2为公布的等比数列,
5、所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.4【2018年浙江卷】已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项数列bn满足b1=1,数列(bn+1bn)an的前n项和为2n2+n()求q的值;()求数列bn的通项公式 【答案】()()()设,数列前n项和为.由解得.由()可知,所以,故, .设,所以,因此,又,所
6、以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5【2018年理数全国卷II】记为等差数列的前项和,已知,(1)求的通项公式;(2)求,并求的最小值【答案】(1)an=2n9,(2)Sn=n28n,最小值为16【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以
7、及自变量为正整数求函数最值.详解:(1)设an的公差为d,由题意得3a1+3d=15由a1=7得d=2所以an的通项公式为an=2n9(2)由(1)得Sn=n28n=(n4)216所以当n=4时,Sn取得最小值,最小值为16点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.2017年高考全景展示1.【2017课标1,理4】记为等差数列的前项和若,则的公差为A1B2C4D8【答案】C【解析】试题分析:设公差为,联立解得,故选C.秒杀解析:因为,即,则,即,解得,故选C.【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差
8、数列的性质,如为等差数列,若,则.2.【2017课标3,理9】等差数列的首项为1,公差不为0若a2,a3,a6成等比数列,则前6项的和为A B C3D8【答案】A【考点】 等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【2017课标II,理3】我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请
9、问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A1盏 B3盏 C5盏 D9盏【答案】B【解析】试题分析:设塔的顶层共有灯盏,则各层的灯数构成一个首项为,公比为2的等比数列,结合等比数列的求和公式有:,解得,即塔的顶层共有灯3盏,故选B。【考点】 等比数列的应用;等比数列的求和公式【名师点睛】用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型数列模型,判断是等差数列还是等比数列模型;求解时,要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后经过数学
10、推理与计算得出的结果,放回到实际问题中进行检验,最终得出结论。4.【2017课标3,理14】设等比数列满足a1 + a2 = 1, a1 a3 = 3,则a4 = _.【答案】【解析】试题分析:设等比数列的公比为 ,很明显 ,结合等比数列的通项公式和题意可得方程组:,由 可得: ,代入可得,由等比数列的通项公式可得: .【考点】 等比数列的通项公式【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.5.【2017课标I
11、I,理15】等差数列的前项和为,则 。【答案】【解析】试题分析:设等差数列的首项为,公差为,由题意有: ,解得 ,数列的前n项和,裂项有:,据此: 。【考点】 等差数列前n项和公式;裂项求和。【名师点睛】等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题。数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法。使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与
12、目的。6.【2017北京,理10】若等差数列和等比数列满足a1=b1=1,a4=b4=8,则=_.【答案】1【解析】试题分析:设等差数列的公差和等比数列的公比为 和 , ,求得 ,那么 .【考点】等差数列和等比数列【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.2016年高考全景展示1.【2016高考新课标1卷】已知等差数列前9项的和为27,则 ( )(A)100 (B)99 (C
13、)98 (D)97【答案】C【解析】试题分析:由已知,所以故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.2. 【2016高考浙江理数】设数列an的前n项和为Sn.若S2=4,an+1=2Sn+1,nN*,则a1= ,S5= .【答案】 考点:1、等比数列的定义;2、等比数列的前项和【易错点睛】由转化为的过程中,一定要检验当时是否满足,否则很容易出现错误3【2016高考江苏卷】已知是等差数列,是其前项和.若,则的值是 .【答案】【解析】由得,因此考点:等差数列性质【名师点睛】本题考查等差数列基本量,对于特殊数列,一般采取待定系数法,即列出关于首项及公差的两个独立条件即可.为使问题易
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班讲述活动教案小马过河
- 2024年高考地理一轮复习课时练29人类活动对区域地理环境的影响含解析中图版
- 2024年度建筑施工用打桩机租赁合同
- 2024年度品牌联合营销合同:两家品牌商就合作推广方案、市场分担及费用等细节签订协议
- 2024年度展会现场清洁合同
- 医疗废物管理条例
- 2024年度供应链优化:采购与分销合同
- 2024年度新能源汽车充电站建设项目合同
- 2024年度新能源电动车研发与生产合同
- 2024年度建筑设计合同:绿色生态城市示范区项目
- C语言ppt课件(完整版)
- 网线的制作与测试教案
- 等数据的计算
- 一、圆锥曲线的光学性质及其应用
- 一医疗设备购置申请表
- 不稳定性心绞痛和非ST段抬高型心肌梗死
- hs编码对照表.xls
- 例谈小升初考场作文的扣题
- 精品资料(2021-2022年收藏的)烟草术语第2部分烟草制品与烟草加工中国烟草标准化
- 百年一人的双均线系统
- 中国华电集团公司KKS电厂标识系统编码
评论
0/150
提交评论