版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基本操作-5/(4.8+5.32)八2 area=pi *2.5八2 x1=1+1/2+1/3+1/4+1/5+1/6 exp(acos(0.3) a=1 2 3;4 5 6;7 8 9 a=1:3,4:6,7:9a1=6: -1:1a=eye(4) a1=eye(2,3)b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5)d=zeros(3,2,2) ;r1=rand(2, 3) r2=5-10*rand(2, 3) r4=2*randn(2,3)+3 arr1=1.1 -2.2 3.3 -4.4 5.5 arr1(3) arr1(1 4) arr1(1:2:5
2、) arr2=1 2 3; -2 -3 -4;3 4 5 arr2(1,:) arr2(:,1:2:3) arr3=1 2 3 4 5 6 7 8 arr3(5:end) arr3(end)绘图x=0:1:10;y=x.A2-10*x+15;plot(x,y)x=0:pi/20:2*pi y1=sin(x);y2=cos(x);plot(x,y1,b-);hold on; plot(x,y2, -)k; legend ( sin xcos x );x=0:pi/20:2*pi;y=sin(x); figure(1) plot(x,y, r-) grid on以二元函数图z = xexp(-xA
3、2-yA2)为例讲解基本操作,首先需要利用meshgrid函数生成 X-Y 平面的网格数据,如下所示:xa = -2:0.2:2;ya = xa;x,y = meshgrid(xa,ya);z = x.*ex p(-x.A2 - y.A2);mesh(x,y,z);建立 M 文件function fenshu( grade ) if grade 95.0disp( The grade is A. else);if grade 86.0disp( The grade is B. else);The grade is C.);if grade 76.0 disp(elseifdisp(elsegr
4、ade 66.0The grade is D.);disp(The grade is F.);endendendend end function y=func(x) if abs(x)1y=sqrt(1-x2);else y=x2-1;end function summ( n) i = 1;sum = 0;while ( i = n ) sum = sum+i;i = i+1;endstr = disp(str)?a 1?a o ,num2str(sum);end求极限syms xlimit(1+x)A(1 /x),x,0,right)求导数syms x; f=(sin(x)/x); diff
5、(f)diff(log(sin(x)求积分syms x;in t(x2*log(x)syms x;int(abs(x-1),0,2)常微分方程求解dsolve(Dy+2*x*y=x*ex p(帜人2),乂)计算偏导数x/(x2 + yA2 + zA2)A(1 12) diff(xA2+yA2+zA2)A(1 /2),x,2)重积分int(in t(x*y,y,2*x,x2+1),x,0,1)级数syms n; symsum(1/2A n,1,i nf)Taylor 展开式求y=exp(x)在x=0处的5阶Taylor展开式 taylor(exp(x),0,6)矩阵求逆A=0 -6 -1; 6
6、2 -16; -5 20 -10 det(A) inv(A)特征值、特征向量和特征多项式A=0 -6 -1; 6 2 -16; -5 20 -10; lambda=eig(A)v,d=eig(A)poly(A)多项式的根与计算p=10-2-5;r=roots(p)p2=poly(r)y1=polyval(p,4)例子:x=-3:3y=3.03,3.90,4.35,4.50,4.40,4.02,3.26;A=2*x, 2*y, ones(size(x);B=x.A2+y.A2;c=inv(A*A)*A*B;r=sqrt(c(3)+c(1)A2+c (2)人2)例子ezplot(-2/3*exp(
7、-t)+5 /3*exp(2*t),-2 /3*exp(-t)+2/3*exp(2*t),0,1) grid on; axis(0, 12, 0, 5)密度函数和概率分布设 x b(20,0.1), binopdf(2,20,0.1)分布函数设 x N(1100,502) , y N(1 1 50,80 2) ,则有normcdf(1000,1100,50)=0.0228 ,1-0.0228=0.9772normcdf(1000,1150,80)=0.0304, 1-0.0304=0.9696统计量数字特征x=29.8 27.6 28.3mean(x)max(x)min(x)std(x)sym
8、s p k;Ex=symsum(k* p*(1- p)A(k-1),k,1,i nf)syms x y; f=x+y;Ex=int(int(x*y*f,y,0,1),0,1)参数估计 例:对某型号的20辆汽车记录其5L汽油的行驶里程(公里)观测数据如下:29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.728.4 27.229.528.528.0 30.029.129.8 29.6 26.9设行驶里程服从正态分布,试用最大似然估计法求总体的均值和方差。x1=29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 2
9、8.7;x2=28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9; x=x1 x2;p=mle(norm,x);muhatmle=p(1), sigma2hatmle=卩(2)人2 m,s,mci,sci=normfit(x,0.5)假设检验例:下面列出的是某工厂随机选取的20 只零部件的装配时间(分)9.8 10.4 10.6 9.6 9.79.910.911.1 9.6 10.210.3 9.6 9.9 11.2 10.6 设装配时间总体服从正态分布, 不小于 10。解 : :在正态总体的方差已知时 MATLAB均值检验程序:10.510.1
10、 10.59.79.8标准差为 0.4,是否认定装配时间的均值在0.05 的水平x1=9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2;x2=10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7;x=x1 x2;m=10;sigma=0.4;a=0.05;h,sig,muci=ztest(x,m,sigma,a,1)得到: h =1, sig =0.01267365933873, muci = 10.05287981908398 Inf% PPT例2 一维正态密度与二维正态密度syms x y;s=1;t=2;mu1
11、=0; mu2=0; sigma1=sqrt(s2); sigma2=sqrt(t2);x=-6:0.1:6;f1=1/sqrt(2* pi*sigma1)*ex p(-(x-mu1).A2/(2*sigma1A2); f2=1/sqrt(2* pi*sigma2)*ex p(-(x-mu2).A2/(2*sigma2A2); p Iot(x,f1,r-,x,f2,k-.) rho=(1+s*t)/(sigma1*sigma2);f=1/(2* pi*sigma1*sigma2*sqrt(1-rhoA2)*ex p(-1/(2*(1-rhoA2)*(x-mu1)A2/sigma1A2-2*rh
12、o*(x-mu1)*(y-mu2)/(sigma1*sigma2)+(y-mu2)2/sigma22);ezsurf(f)0.350-60.30.250.20.150.10.05-4-2024644798133900177/281474976710656 exp(-5/2 x 2+3 x y-y 2)5x0.2 . -0.15 .0.1 .0.05 .0 ,-5y% P34 例 3.1.1 p1= poisscdf(5,10) p2=poiss pdf(0,10) p1,p2%输出p1 =0.0671p2 =4.5400e-005 ans =0.0671 0.0000 % P40 例 3.2.
13、1 p3=poisspdf(9,12)% 输出p3 = 0.0874 % P40 例 3.2.2 p4=poisspdf(0,12)% 输出p4 = 6.1442e-006% P35-37(Th3.1.1) 解微分方程% 输入:syms p0 p1 p2 ;S=dsolve(Dp0=-lamda*p0,Dp1=-lamda*p1+lamda*p0,Dp2=-lamda*p2+lamda*p1,p0(0) = 1,p1(0) = 0,p2(0) = 0);S.p0,S.p1,S.p2 % 输出:ans =ex p(-lamda*t), exp(-lamda*t)*t*lamda, 1/2*ex
14、p(-lamda*t)*tA2*lamdaA2 % P40 泊松过程仿真% simulate 10 timesclear;m=10; lamda=1; x=;for i=1:ms=exprnd(lamda, seed,1 );% seed 是用来控制生成随机数的种子 , 使得生成随机数的个数是一样的x=x,exprnd(lamda);t1=cumsum(x);end x,t1 ans =0.65093.05700.65092.4061%输出:0.10023.15720.12293.28000.82334.10330.24634.34961.90746.25700.47836.73531.344
15、78.08000.80828.8882%输入:N=;for t=0:0.1:(t1(m)+1)if tt1(1)N=N,0;elseif tt1(2)N=N,1;elseif tt1(3)N=N,2;elseif tt1(4)N=N,3;elseif tt1(5)N=N,4;elseif tt1(6)N=N,5;elseif tt1(7)N=N,6;elseif tt1(8)N=N,7;elseif tt1(9)N=N,8;elseif tt1(10)N=N,9;elseN=N,10;endendplot(0:0.1:(t1(m)+1),N,r-)%输出:1098765432100123456
16、78910% simulate 100 times clear;m=100; lamda=1; x=;for i=1:m s= rand( seed); x=x,ex prn d(lamda); t仁cumsum(x);endx,t1N=;for t=0:0.1:(t1(m)+1)if t=t1(i) & tt1(m)N=N,m;endendplot(0:0.1:(t1(m)+1),N,r-)%输出:09080706050403020100102030405060708090100% P48非齐次泊松过程仿真% simulate 10 times clear;% exprn d(lamda.s
17、eed,1 ); set seedsm=10; lamda=1; x=; for i=1:ms=rand( seed); x=x,ex prn d(lamda); t仁cumsum(x);end x,t1N=; T=;for t=0:0.1:(t1(m)+1)T=T,t.A3;% time is adjusted, cumulative inten sity fun cti on is t3.if t=t1(i) & tt1(m)N=N,m;endend plot(T,N, r-) % out put ans =0.42200.42203.33233.75430.16353.91780.068
18、33.98610.38754.37360.27744.65100.29694.94790.93595.88380.42246.30621.76508.0712109876543218006007000100200300400500010 times simulati on10090807060504030201024x 10506 8 10100 times simulatio n2% P50复合泊松过程仿真 % simulate 100 times clear;niter=100;lamda=1;% iterate n umber % arrivi ng rate,s)t=inp ut( I
19、nput a time:for i=1: ni terrand( state,sum(clock);x=ex prn d(lamda);t1=x;% in terval timewhile t1tx=x,ex prn d(lamda); t1=sum(x);end% arriv ing timet1=cumsum(x);y=trnd(4,1,le ngth(t1);gamr nd(1,1/2,1,le ngth(t1); frnd(2,10,1,le ngth(t1);t2=cumsum(y);% ran d(1,le ngth(t1);endx,t1,y,t2X=; m=le ngth(t1
20、);for t=0:0.1:(t1(m)+1) if t=t1(i) & tt1(m)X=X,t2(m);endendplot(0:0.1:(t1(m)+1),X,r-)跳跃度服从0,1均匀分布情形跳跃度服从(1, 1/2)分布情形201510500102030405060708090-550Lr45J.45940-40-35-35-30302525E20-20-1-15-15-10105-5-00020406080100120020406080100120跳跃度服从t( 10)分布情形% Simulate the probability that sales revenue falls in
21、 some interval. (e.g. example 3.3.6 in teaching material) clear;niter=1.0E4; lamda=6;t=720; above=repmat(0,1,niter);% number of iterations% arriving rate (unit:minute) % 12 hours=720 minutes% set up storagefor i=1:niterrand( state,sum(clock) x=exprnd(lamda); n=1;while x=t% arriving timen=n;elsen=n+1
22、;endendz=binornd(200,0.5,1,n);y=sum(z);above(i)=sum(y432000); end% generate n salespro=mean(above)Output: pro =0.3192% Simulate the loss pro. For a Compound Poisson process clear;niter=1.0E3; lamda=1; t=input(Input a time:,s) below=repmat(0,1,niter);% number of iterations% arriving rate% set up stor
23、age);% interval time% arriving timefor i=1:niterrand( state,sum(clock) x=exprnd(lamda); n=1;while x=tn=n; elsen=n+1;endendr=normrnd(O.O5/253,O.23/sqrt(253),1,n); % generate n random jumps y=log(1.OE6)+cumsum(r);minX=min(y);% minmum return over next n jumpsbelow(i)=sum(minXlog(95OOOO);end pro=mean(be
24、low)Output: t=50, pro=0.45% P75 (Example 5.1.5) 马氏链 chushivecO=O O 1 O O OP=O,1/2,1/2,O,O,O;1/2,O,1/2,O,O,O;1/4,1/4,O,1/4,1/4,O;O,O,1,O,O,O,;O,O,1/2,O, O,1/2;O,O,O,O,1,Ojueduivec1=chushivecO*P jueduivec2=chushivec0*(卩人2) % 计算 1 到 n 步后的分布 chushivecO=O O 1 O O O;P=O,1/2,1/2,O,O,O;1/2,O,1/2,O,O,O;1/4,1
25、/4,O,1/4,1/4,O;O,O,1,O,O,O,;O,O,1/2,O, O,1/2;O,O,O,O,1,O;n=1Ot=1/6*ones(1 6); jueduivec=repmat(t,n 1);for k=1:njueduiveck=chushivecO* (P jueduivec(k,1:6)=jueduiveck end % 比较相邻的两行n=70;jueduivec n=chushivecO* (Pn) n=71;jueduivec n=chushivecO* (Pn) % Replace the first distribution, Comparing two neighb
26、our absolute-vectors once more chushivec0=1/6 1/6 1/6 1/6 1/6 1/6;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0, 0,1/2;0,0,0,0,1,0;n=70;jueduivec n=chushivecO* (Pn)n=71;jueduivec n=chushivecO* (Pn) % 赌博问题模拟(带吸收壁的随机游走:结束 1次游走所花的时间及终止状态) a=5; p=1/2;m=O;while mO & a0 & a1
27、5m=m+1;r=2*binornd(1,p)-1;if r=-1a=a-1;elsea=a+1;endendif a=0t1(1,n)=m; m1=m1+1; elset2(1,n)=m; m2=m2+1;end endfprintf( The average times of arriving 0 and 10 respectively are %d,%d.n ,sum(t1,2)/m1,sum(t2,2)/m2);fprintf( The frequencies of arriving 0 and 10 respectively are %d,%d.n m2/N);,m1/N,m1/N,
28、% verify:fprintf( The probability of arriving 0 and its approximate respectivelyare %d,%d.n, (p 0*(1-卩)人5-p 人5*(1-卩)人10)/(卩人5*(卩人10-(1- p)。),m1/N);fprintf( The expectation of arriving 0 or 10 and its approximate respectivelyare %d,%d.n,5/(1-2* p)-10/(1-2* p)*(1-(1-卩)人5/卩人5)/(1-(1- plO/pTO),(sum(t1,2
29、)+sum(t2,2)/N);.1通过Kolmogorov微分方程求转移概率%i续时间马尔可夫链输入:clear;syms pOO pO1 p10 p11 lamda mu; P= pOO, p01; p10, p11;Q=-lamda,lamda;mu,-muP*Q输出:ans =-p 00*lamda+p01*mu, p 00*lamda-p01*mu-p 10*lamda+p11*mu, p 10*lamda-p 11*mu输入:p OO, pO1, p1O, p11=dsolve(D pO O=-pOO*lamda+pO1*mu,D pO仁 pOO*lamda-pO1*mu,D p1O
30、=-p1O*lamda+p11*mu,D p1仁 p1O*lamda-p11*mu, pOO(O)=1, pO1(O)=O, p1O(O)=O, p11(O )=1)输出:pOO =mu/(mu+lamda)+ex p(-t*mu-t*lamda)*lamda/(mu+lamda)pO1 =(lamda*mu/(mu+lamda)-ex p(-t*mu-t*lamda)*lamda/(mu+lamda)*mu)/mup10 =mu/(mu+lamda)-ex p(-t*mu-t*lamda)*mu/(mu+lamda)p11 =(lamda*mu/(mu+lamda)+ex p(-t*mu-t
31、*lamda)*muA2/(mu+lamda)/muend% set the state of randn% p reallocate arrays .% for efficie ncydW(1) = sqrt(dt)*ra ndn;W(1) = dW(1);for j = 2:NdW(j) = sqrt(dt)*ra ndn;W(j) = W(j-1) + dW(j); end% first app roximati on outside the loop % si nee W(0) = 0 is n ot allowed% gen eral in creme ntplot(0:dt:T,0,W,r-)% plot W agai nst txlabel( t, FontSize ,16)ylabel( W(t),FontSize,16,Rotatio n,0)% BP ATH2 Brow nian p ath simulatio n: vectorizedrandn( state ,100) T = 1; N = 500; dt = T/N;% set the state of ra ndndW = sqrt(dt)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025便利店商品采购与配送合同范本3篇
- 二零二五年度家居装饰材料区域代理采购合同3篇
- 2025年度10架AC311A直升机购销与地面服务保障合同3篇
- 二零二四年度三方贷款资金管理合同3篇
- 二零二五版高端装备制造工厂生产承包合同书模板3篇
- 年度智慧停车战略市场规划报告
- 2025年蔬菜大棚农业科技研发与创新合作合同2篇
- 年度丙二酮战略市场规划报告
- 二零二五版个人短期租房合同补充协议2篇
- 2024-2025学年高中历史第8单元20世纪下半叶世界的新变化第21课世界殖民体系的瓦解与新兴国家的发展课时作业含解析新人教版必修中外历史纲要下
- 第12讲 语态一般现在时、一般过去时、一般将来时(原卷版)
- 2024年采购员年终总结
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 肺动脉高压的护理查房课件
- 2025届北京巿通州区英语高三上期末综合测试试题含解析
- 公婆赠予儿媳妇的房产协议书(2篇)
- 煤炭行业智能化煤炭筛分与洗选方案
- 2024年机修钳工(初级)考试题库附答案
- Unit 5 同步练习人教版2024七年级英语上册
- 矽尘对神经系统的影响研究
- 分润模式合同模板
评论
0/150
提交评论